
Age-Related Heteroskedasticity in Hedonic House Price Equations 25

Age-Related Heteroskedasticity in Hedonic House Price
Equations

Allen C. Goodman and Thomas G. Thibodeau*

Abstract

This article examines the relationship between dwelling age and the market value of owner-occupied
housing. The article theoretically establishes and empirically verifies that (1) housing deprecia-
tion is nonlinear and (2) dwelling age-induced heteroskedasticity is prevalent in hedonic house
price equations. The empirical results are obtained with a semilog hedonic house price equation
from data on nearly 8,500 transactions of single-family homes in Dallas. Hedonic parameters are
estimated with four alternative dwelling age specifications and two iterative generalized least
squares estimation procedures that accommodate heteroskedasticity by explicitly modeling the
residual variance. Estimated depreciation rates are sensitive to both the dwelling age specification
and the estimation procedure. The article establishes the importance of incorporating second-order
effects in obtaining accurate point estimates for housing depreciation.

Keywords: Housing depreciation; Housing econometrics; House prices; Hedonic price theory

Introduction

The hedonic procedure is frequently used to quantify the effect of various housing and
neighborhood characteristics on house prices. Empirically, the technique uses regression
analysis to explain variation in market values using property characteristics. A hedonic
equation for single-family homes relates some market value estimate (the owner’s
estimate, a real estate appraiser’s estimate, a tax assessor’s estimate, or, if the property
was recently sold, the transaction price) to the property’s characteristics (square feet of
living space, lot size, dwelling age, whether the property has a swimming pool, variables
measuring proximity to transportation arteries, variables measuring the quality of
public services, etc.). The relevant housing characteristics to include in the hedonic
specification, the most appropriate functional form, the proper estimation procedure, and
the correct interpretation of the estimated hedonic parameters are all topics of debate.

This article examines two issues related to hedonic house price equations: (1) how the
dwelling age specification influences estimated depreciation rates and (2) whether the
error variance is systematically related to dwelling age. The empirical analysis uses a
semilogarithmic hedonic house price equation and data on nearly 8,500 sales of
single-family detached homes in Dallas. The hedonic parameters are estimated by an
iterative generalized least squares (GLS) procedure that models the relationship be-
tween dwelling age and the residual variance. Four dwelling age specifications and two
variance models are examined.
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of Real Estate in the E. L. Cox School of Business, Southern Methodist University. The authors thank Ed
Coulson, Ron Gallant, Panayiotis Mavros, and a referee for useful comments. Remaining errors are the
authors’ responsibility.
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The article theoretically establishes and empirically verifies that (1) the relationship
between house value and dwelling age is nonlinear and possibly nonmonotonic and
(2) dwelling age-induced heteroskedasticity is prevalent in hedonic house price equa-
tions. We introduce variance modeling procedures that increase efficiency as well as
influence hedonic parameter point estimates, in both large and small samples. The
article establishes the importance of incorporating second-order effects in obtaining
accurate point estimates for parameters.

Hedonic House Price Specification

A hedonic equation for owner-occupied homes relates an estimate of the property’s
market value to the various characteristics that determine its value. Housing character-
istics can be loosely grouped into five categories: (1) characteristics of the lot,
(2) characteristics of the improvement, (3) neighborhood amenities, (4) proximity vari-
ables, and (5) the period when the housing data are collected. The general specification
for a hedonic house price equation is

    V = f L, S, N , P , t( ) , (1)

where V is the estimated market value of the property (sales price); L denotes a class of
variables describing lot characteristics (lot size, shape, topography, site improvements,
frontage, etc.); S denotes a class of variables describing structural characteristics (square
feet of living space, dwelling age, number of stories, types of equipment and fuels used
to provide services, etc.); N denotes a class of neighborhood variables (percentage of
improved land area in the neighborhood allocated to owner-occupied homes, percentage
nonresidential, percentage undeveloped, employment density, public school achieve-
ment scores, police and fire department response times, crime rates, etc.); P denotes a
class of proximity variables (distances to the central business district, various noncon-
forming land uses that may produce externalities, neighborhood recreation facilities,
schools, shopping, public transportation, major thruways, etc.); and t denotes the period
when property information was collected.

Rosen’s (1974) hedonic model (and those derived from it) admits nonlinear price func-
tions. This suggestion has motivated researchers to examine alternative hedonic speci-
fications including the semilog and log-log, as well as empirically search over alternative
specifications using Box-Cox transformations (Box and Cox 1964). The Box-Cox formu-
lation provides a useful way of summarizing alternative approaches to estimating
hedonic price regressions. Consider the general form:

    
V λ 0 − 1( ) λ 0 = β0 + β1 X λ 1 − 1( ) λ 1 + µ . (2)

It is easily shown that the hedonic price ∂V/∂X equals

    ∂V ∂X = β1X λ 1 −1V 1−λ 0 . (3)

Thus, the conventional linear form   λ 0 = λ 1 = 1( )  yields constant hedonic prices. Log-log

  λ 0 = λ 1 = 0( )  or semilog   λ 0 = 0; λ 1 = 1( )  yields a hedonic price model with a multipli-
cative structure. Researchers can either test the three forms against each other or
estimate the nonlinear parameters in λ directly. Moreover, the second derivative of the
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hedonic price function     ∂
2V ∂X 2 ≥ 0  as β1X λ 1V −λ 0 1 − λ 0( ) ≥ 1 − λ 1( ) ,  providing valu-

able information on the slope and curvature of the underlying envelope of bid and offer
curves.

The main advantage of the nonlinear specifications is that they permit characteristic
prices to vary with the quantity of other housing characteristics included in the bundle.
Also, some dependent variable transformations correct for heteroskedasticity between
house value and the residual (i.e., prediction errors tend to be larger, in absolute value,
as property values increase).

Several authors have applied Box-Cox transformations to hedonic house price equations.
Goodman (1978) computed house price indices for 15 separate housing submarkets using
this technique. He reported that the estimated hedonic coefficients are not constant
across submarkets and are not constant over time. In addition, his empirical results
support rejection of both linear and semilog specifications. Halvorsen and Pollakowski
(1981) also rejected the linear and semilog functional forms using the Box-Cox technique.
Linneman (1980) used data from the 1973 national Annual Housing Survey (AHS) to
estimate housing hedonic equations for Chicago, Los Angeles, and a pooled sample of the
34 largest metropolitan areas. For owner-occupied properties in Chicago, Los Angeles,
and the pooled sample, he reported Box-Cox parameters compatible with the semilog
specification.

Effect of Dwelling Age on House Price

Dwelling age influences a property’s market value in two ways. First, age is used to
quantify economic depreciation. Hulten and Wykoff (1981) define economic depreciation
as “the decline in asset price (or shadow price) due to aging.”  Second, a dwelling’s age may
also incorporate a vintage effect. The vintage effect occurs when some unmeasured
housing characteristic (for example, housing quality) is correlated with the year that a
dwelling was built (see Hall 1971 for a discussion of the vintage effect in durable goods).

Consider a standard hedonic house price function of the type

    P = Poe−δα , (4)

where d is the rate of depreciation, and α is the dwelling age. The usual finding with
respect to depreciation is     ∂P ∂α( ) P = −δ .

Now consider a model without renovation, but in which houses with different values of
α have different levels of Po.     Hence,  P = Po α( )e−δα .  In this model, houses built α years
ago have the characteristics of vintage α, built according to the decisions of builders α
years before. How age affects price in this relationship is jointly determined by the supply
decisions of the builders of that housing vintage and the set of consumer preferences in
the current period. More generally, we get (∂P/∂a)/P = Po9 – d, where Po9 refers to the
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percentage change in Po. This term may be positive or negative, depending on the
availabilities and valuations of neighboring vintages of housing.1

Finally, consider the renovation decision. In each year, holding depreciation constant,
the housing stock is influenced by constructing new units and by renovating the existing
stock. Again, consider a house built a years before. Renovations, R(t), at any time t
between 0 and α, may either increase or decrease the value of the house, again depending
on the supply of housing of that vintage and the set of current consumer preferences.
Consider the index A, such that

    
A = 1 + R t( )dt ,  where A = 1 at α = 0  and A > 0  for all α .  Then  P = Po α( ) A α( )e−δα .

0

α
∫

Differentiating this with respect to α yields (∂P/∂a)/P = Po9 + A′ – d, (with A′ equal to the
percentage change in A), which again may be positive or negative.

This analysis suggests that over given periods the asset price of housing might vary
either positively or negatively with dwelling age and that hedonic house price estimation
methods must permit nonlinear variation with dwelling age.

Heteroskedasticity in Hedonic House Price Equations

Since the hedonic price specification is very general and may encompass a large num-
ber and variety of variables, it is plausible that any or all of them may contribute
to heteroskedasticity of the error term. Indeed, White (1980) provides a
heteroskedasticity-consistent ordinary least squares (OLS) variance estimator that
includes information from the entire matrix of explanatory variables. We will use this
estimator as a benchmark for our estimates.

Although hedonic house price heteroskedasticity may simply be related to errors in
specification, economic theory also provides insights into the nature of the error term.
Housing is a long-lived durable good, which depreciates, requires maintenance, and is
subject to renovation. The prices and attributes of new housing are related to known
market conditions at the time it is built. Dwelling age heteroskedasticity is likely because
the magnitude of the error in predicting house price probably increases with dwelling
age. The older a dwelling, the more likely the property was significantly upgraded or
improved at some time during its life. The most common home improvements (upgrading
a kitchen or a bathroom, replacing heating or air conditioning systems, installing a new
roof) are typically not recorded in publicly available data sets. Consequently, there is no
way to incorporate these improvements in the hedonic specification.

Heteroskedasticity with respect to dwelling age would reflect the joint probability of
renovation and maintenance, multiplied by the level of renovation or maintenance that
took place, integrated over the age of the house. While the functional notation of the
relationship may be arbitrary, it is clear that increased age almost certainly leads to
heteroskedasticity of the error term.

1 There is a parallel literature on nonmonotonic price-distance functions (e.g., DeVany 1976; Goodman 1979;
Polinsky and Shavell 1976). Note that for ∂P/∂α to be positive, consecutive periods must show the vintage
effects posited. Otherwise the vintage effects will be seen as (heteroskedastic) error.
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The interaction between dwelling maintenance and vintage also contributes to dwelling
age-induced heteroskedasticity. Let the price of a house of vintage o at time t be
P(t) = Poe–dt. P(0) is the average price over all houses built at time 0. At any given time,
the amount of maintenance up to time T would be 

    0

T

∫ m(t) dt, where m(t) is annual
maintenance. This expression has a lower bound of 0 (no maintenance), so as t increased,
so would the variance. In addition, even if we assume there is only one renovation during
the life of the house, the renovations may differ according to the vintage of the renovation.
Presumably, as t increases, the probability that houses have renovations of different
vintages increases, further contributing to heteroskedasticity.

There are two compelling reasons to be concerned about age-related heteroskedasticity.
The first involves estimating coefficient matrix β (including estimated depreciation
rates) relating outcome y to explanatory matrix X. The standard GLS estimator for β is

    
b̃ = ′X Ω−1X( )−1

′X Ω−1y , (5)

where Ω is the symmetric positive definite matrix used to multiply the homoskedastic
disturbance matrix. This compares to the OLS estimator of

    
b = ′X X( )−1 ′X y . (6)

Although b and    b̃  are unbiased (i.e., E(b) = E (    b̃)), they are equal for a given sample only
if Ω-1 is the identity matrix. Hence, for any given sample, estimated depreciation
parameters included in β will be related to the heteroskedasticity of the error term.
Hence, in this model, inaccurate characterization of the variance leads to inaccurate
estimation of depreciation.

The second reason to be concerned about age-related heteroskedasticity involves the
real-world use of hedonic regressions. Various forms of hedonic regressions are used for
property tax assessments, in which accuracy is critical, both to ensure equity in property
value assessments and to minimize the error variance to limit costly appeals. In this
context, the variance truly comprises a “cost function” of inaccurate estimation. Appro-
priate corrections for heteroskedasticity reduce the variance of the market value esti-
mates, thus making the process more efficient and hence less costly.

We propose an estimation approach using an iterative GLS procedure suggested by
Davidian and Carroll (1987). This procedure uses an iterative model in which the
regression parameters and the variance function are jointly measured in a semiparametric
model. Two variance models are examined here: The first relates the absolute value of the
residual to a polynomial in dwelling age, and the second relates the square of the residual
to a similar polynomial.

To begin the two-stage iterative GLS estimation procedure, OLS is first used to provide
consistent estimates of the hedonic coefficients. Let ei be the estimated residuals obtained
from this stage. The second step uses OLS to estimate parameters for the residual
variance model. The absolute-value-of-the-residual model is

    ei = θ0 + θ1AGE + θ2AGE2 + θ3AGE3 + θ4AGE4 . (7)
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The residual-squared model is

    ei
2 = θ0 + θ1AGE + θ2AGE2 + θ3AGE3 + θ4AGE4 . (8)

The first step is then repeated using weighted least squares. The weights are reciprocals
of the normalized predicted values obtained from the variance model. We constrain the
dwelling age specification in the variance model to be identical to the age specification in
the hedonic equation. For example, the weights for the quadratic dwelling age hedonic
specification are estimated from variance models that force β3 = β4 = 0.

This procedure yields efficient estimates of the regression parameters and of the variance
of the estimators. The resulting GLS estimators are more reliable than the OLS
estimators. Further, the variance estimates themselves may be important to those who
seek to relate possible appraisal errors to observable factors. Finally, the procedures are
easily programmed and easily used.

The Empirical Literature

Numerous papers have used hedonic equations to estimate (∂P/∂α)/P. Kain and Quigley
(1970) examined services provided by individual housing characteristics using factor
analysis on 39 indices of housing quality. Their study, using a survey of St. Louis
households, yielded depreciation rates of 0.7 percent for owner-occupied housing. Grether
and Mieszkowski (1974) examined single-family homes sold in New Haven, Connecticut,
and its suburbs between 1962 and 1969. They incorporated dwelling age (in addition to
neighborhood variables) interactively with lot size on the assumption that land does not
depreciate. They reported that the effect of age on house price was nonlinear, with
younger dwellings depreciating more rapidly than older ones.

Other authors have examined alternative dwelling age specifications. Palmquist (1979)
examined linear, semilog, log-linear, inverse semilog, and Box-Cox transformations to
correct a repeat-sales house price index for depreciation. Palmquist ultimately selected
the semilog functional form and estimated a 0.8 percent annual depreciation rate. Jones,
Ferri, and McGee (1981) empirically examined five alternative dwelling age specifica-
tions: (1) geometric depreciation, (2) quadratic depreciation, (3) cubic depreciation,
(4) piecewise geometric depreciation (using dummy variables for dwelling age intervals
in a semilog hedonic specification), and (5) interactive depreciation that examines the
joint effect of lot size and dwelling age. They concluded that the cubic dwelling age
specification provided the best fit for their data.

Malpezzi, Ozanne, and Thibodeau (1980, 1987) estimated economic depreciation for
renter- and owner-occupied housing located in the 59 metropolitan areas surveyed by the
1974–76 Standard Metropolitan Statistical Area (SMSA) AHS. To avoid constraining the
depreciation rate to be constant, the Malpezzi, Ozanne, and Thibodeau semilog hedonic
specification included higher order dwelling age terms (dwelling age squared and
dwelling age cubed), as well as a dummy variable for the oldest dwellings (those built
before 1940). They reported that market values, on average, decrease with dwelling age
and that newer units depreciate more rapidly than older ones. The 59-SMSA average
depreciation rate for owner-occupied housing ranged from 0.9 percent in year 1 to
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0.28 percent in year 20. The rate of economic depreciation for 10-year-old owner-occupied
dwellings was half that for new ones. By year 30 the rate rose again to 0.6 percent.

Cannaday and Sunderman (1986) employed a log-linear model to estimate depreciation
for single-family homes in the southwest portion of Champaign, Illinois. Their data
consisted of 812 transactions for the 1976–84 period. Unlike most of the other empirical
literature, they reported a depreciation pattern that was initially less rapid than straight
line.

Randolph (1988a) separated economic depreciation from the so-called vintage effect
using data from the 1974 and 1977 Detroit AHS. Randolph’s example of the vintage effect
in housing is that “building technology or material costs may change over time so as to
introduce a trend in the initial unmeasured structural qualities of housing units. City
growth patterns may have entailed the building of equivalent structures on more
valuable land first, consequently introducing a time trend in some unmeasured location
and structural characteristics” (p. 164). Randolph demonstrated that longitudinal data
do not permit estimation of economic depreciation unless some identifying assumptions
are made. The necessary assumptions are that either (1) the long-term vintage effect is
negligible or (2) the average market level of unmeasured housing quality is stable.
Randolph’s “empirical results indicate that the assumption of stable unobserved quality
is likely to be superior to ignoring vintage effects” (p. 174). In a subsequent paper
designed to correct the shelter component of the Consumer Price Index for the age bias,
Randolph (1988b) assumed that the vintage effect was negligible.

Few hedonic house price papers have examined heteroskedasticity, and nearly all that
have examined it have focused on heteroskedasticity associated with house value. To
correct for heteroskedasticity in their linear hedonic specification, Grether and
Mieszkowski (1974) divided each observation by the size of the house and the construc-
tion price index, transforming the dependent variable to a real price per square foot. They
report that the transformation made very little difference in either the estimated
coefficients or the t statistics. Palmquist (1979) tested a semilog hedonic specification for
heteroskedasticity and concluded that the data did not support rejection of a homoskedastic
error variance.

Randolph (1988a) observed that the residual variance increased with dwelling age
squared. He estimated regression parameters by the two-step GLS procedure of Hildreth
and Houck (1968). Finally, Rachlis and Yezer (1988) illustrated how heteroskedasticity
affects the measurement of housing-related real estate risk. They examined
heteroskedasticity in hedonic house price equations for five cities, using data obtained
from the Federal Housing Administration and from the 1970 Census of Population and
Housing. They regress the absolute value of the residual on included housing character-
istics and conclude “The variable most consistently related to appraisal risk . . . is age of
structure” (p. 294). They correct for heteroskedasticity by a weighted least squares
estimation procedure.

Data, Hedonic Specification, and Estimation Procedure

This article examines alternative dwelling age specifications and age-induced
heteroskedasticity using data for 8,476 transactions of single-family homes sold during
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1984 and 1985 in Dallas. The primary source of information is the Dallas Central
Appraisal District (DCAD), which is responsible for estimating property values (for tax
purposes) for all real property in Dallas County. DCAD provided a computer file
containing each property’s address as well as information on each residential property’s
structural characteristics (square feet of living space, year built, etc.). DCAD obtains
sales data from the local multiple listing service and from the North Texas Regional Data
Center of the Society of Real Estate Appraisers.

Within Dallas County there are 28 municipalities and 15 school districts. Each municipal
government and each school district raises its own revenues and provides its own
services. In addition, municipalities frequently overlap with school districts. To avoid tax
capitalization issues, only properties that are both in the Dallas Independent School
District and in the city of Dallas are included here. Since this limitation eliminates the
variation in tax rates across properties, all variables included in traditional tax capitali-
zation studies have been excluded. In addition to dwelling age, only two other housing
characteristics are included in the hedonic specification: square feet of living space and
month of sale. Square feet of living space is specified as a quadratic, and each month of
sale, except for January 1984, is represented by a dummy variable.

The mean sales price for the 8,476 transactions was $104,297; the median was $78,250.
The average dwelling had 1,703 square feet of living space and was 29 years old. The sales
were approximately uniformly distributed over the 24 months beginning in January
1984.

A semilogarithmic specification is employed:

    

ln Vi( ) = β0 + β1AGE + β2AGE2 + β3AGE3 + β4AGE4

+ β5LIVAREA + β6LIVAREA2

+ δ jSOLD j + µ i
j =2

24

∑
(9)

where

ln(Vi) = natural log of the reported selling price of the ith house,
AGE = age of the house in years,
LIVAREA = living area in square feet,
SOLDj = dummy variable for the jth month of sale.

Four dwelling age specifications are examined. The linear specification forces the
depreciation rate to be constant by constraining β2 = β3 = β4 = 0; the quadratic forces
β3 = β4 = 0; the cubic forces β4 = 0; and the final alternative estimates the coefficients for
a quartic specification. Estimated depreciation rates are computed from

    ∂V ∂AGE = β1 + 2β2AGE + 3β3AGE2 + 4β4AGE3 . (10)
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Hedonic parameters are initially estimated by OLS, before the Davidian and Carroll
procedure is implemented. The residuals from the OLS regression are then examined for
heteroskedasticity. Two separate tests for heteroskedasticity are employed: one devel-
oped by Goldfeld and Quandt (1965) and one by White (1980). The Goldfeld-Quandt test
partitions the data into two groups according to dwelling age. Separate hedonic
parameters are estimated for each sample. The ratio of the estimated error variances
follows an F distribution. The White test regresses the squared residuals from the
hedonic equation on the squares and cross products of the regressors. The product of the
sample size and the squared multiple correlation coefficient follows a χ2 distribution.

Results

OLS regression statistics for the four alternative dwelling age specifications are pre-
sented in table 1. The first two columns list the estimated coefficients and White’s (1980)
heteroskedasticity-consistent standard errors for the linear dwelling age specification.2

While theory provides a persuasive case for entering age as a polynomial, there are two
reasons to check the linear specification. First, linear coefficients are easily and directly
interpreted. Second, by far the largest portion of hedonic price studies have treated age
in this manner. Checking this specification provides guidance in interpreting the
findings from other studies. The second pair of columns lists regression statistics for the
quadratic specification, the third pair for the cubic specification, and the final pair for the
quartic specification. In each case, the estimated parameters explain at least 73 percent
of the variance in the natural log of sales price. The quartic dwelling age specification
explains more than 75 percent of the variance. The estimated coefficients for living area
are relatively stable across the specifications and indicate that living area increases
valuation at a decreasing rate. Furthermore, the empirical results suggest that Dallas
house prices were essentially constant during January 1984 to February 1985 but
increased significantly during the remainder of 1985. The estimated coefficients for
month of sale are relatively stable across the four specifications.

The constant geometric depreciation rate obtained from the linear dwelling age specifi-
cation is 0.137 percent. This rate is similar to rates estimated in other studies that
constrain depreciation to be a constant rate.

The results for the polynomial dwelling age specifications provide empirical support for
nonlinear depreciation rates. Standard F tests on the restriction of polynomial dwelling
age terms indicate that increased orders of the polynomials significantly increase the
explanatory power of the regressions. The quartic specification yields a 6.7 percent
annual depreciation rate for dwellings one year old. The rate decreases to 1.4 percent for
dwellings 10 years old.

To examine dwelling age-induced heteroskedasticity, the data were partitioned into 13
dwelling age categories. The categories were constructed to allocate observations equally
among categories. The first column in the top part of table 2 defines the dwelling age
categories, while the second column lists the number of observations in each category.
The mean number of observations in a category is 652; the standard deviation is 45. The

2 Greene (1993) demonstrates that the OLS estimated standard errors are biased downward.
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last four columns in the top part of table 2 list the within-age-category error variances
for each specification. Except for the newest homes, error variances increase monotoni-
cally with dwelling age. Error variances for the oldest dwellings (more than 57 years old)
are consistently more than three times those for dwellings between 14 and 19 years old.
The bottom part of table 2 presents results for the Goldfeld-Quandt and the White
heteroskedasticity tests. Both tests reject the null hypothesis of homoskedastic error
variances at conventional levels for each dwelling age specification.

The estimated parameters for the variance models and the hedonic house price equations
are presented in tables 3 and 4. The final variance model parameter estimates (converg-
ing after three iterations in all cases) are shown in table 3. The absolute value of the
residual variance is less sensitive to outliers than is the square of the residual and
consequently provides a slightly better empirical fit for the data. Either specification
indicates that the variance increases with dwelling age, suggesting heteroskedasticity in
estimation and providing cause for increased attention by home appraisers.

Iterative GLS regression statistics are provided in table 4 for the model based on the
absolute value of the residual variance (the results for the residual-squared model are
similar and available from the authors on request). As expected, the GLS procedures
reduce estimated standard errors. The GLS estimation procedures also improved the
overall goodness of fit. The iterative GLS procedure using the absolute value of the
variance reduced the standard error of the intercept by 4.5 percent for the linear dwelling
age specification and by 3.6 percent for the quartic dwelling age specification. Note that
the constant geometric depreciation rate increases from 0.137 percent for the OLS
procedure to 0.173 percent for the residual-squared variance model (not shown)—a
26 percent increase in the depreciation rate. Even though the GLS procedure is primarily
designed to improve efficiency, the resulting point estimates are sensitive to the estima-
tion technique, even in large samples. In the abstract of their paper, Davidian and Carroll
(1987, 1079) noted:

Standard asymptotic theory implies that how one estimates the variance
function, in particular the structural parameters, has no effect on the first-order
properties of the regression parameter estimates; there is evidence, however,
both in practice and higher-order theory to suggest that how one estimates the
variance function does matter.

The within-age-category error variances for the iterative GLS estimation procedure
using the absolute value of the residual are listed in table 5. Weighting transactions
inversely proportional to the absolute value of the residual reduces estimated standard
errors for newer properties but increases standard errors for older ones. The basic
pattern in residuals is unchanged, however.

The importance of the dwelling age specification and estimation procedure is also
apparent in the estimated depreciation rates. Depreciation rates (results available from
the authors) are very sensitive to the estimation procedure when the linear and quadratic
forms are employed, but less sensitive in the cubic and quartic specifications. For the
linear specification, OLS yields a constant depreciation rate of 0.137 percent annually,
the absolute-value-of-the-residual GLS depreciation rate is 0.146 percent, and the
residual-squared depreciation rate is 0.173 percent. For the quadratic specification, OLS
yields a 0.24 percent annual appreciation rate for dwellings one year old, while the GLS
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rates are essentially zero. As dwellings age, the OLS appreciation rates decline and
eventually (for 25-year-old dwellings) become negative. The GLS depreciation rates in
the quadratic specification are essentially zero throughout the dwelling age distribution.

The depreciation patterns produced by the cubic and quartic dwelling age specifications
provide evidence that depreciation rates vary considerably with dwelling age. When
dwelling age is specified as a cubic, the estimated annual depreciation rates are between
3.2 percent and 3.5 percent for new dwellings. The rates decline rapidly (in absolute
value) with dwelling age: The rate for 8-year-old dwellings is half the rate for new homes.
The depreciation rate declines to zero for dwellings 15 to 20 years old. Dwellings 20 to 40
years old appreciate slightly, while older dwellings depreciate. The depreciation pattern
is similar, but more pronounced, for the quartic dwelling age specification. The annual
depreciation rate is between 6.5 and 6.7 percent for 1-year-old dwellings. Within 6 years,
the depreciation rate is reduced by half. Dwellings between 15 and 40 years old
appreciate, while older units depreciate.3

Conclusion

A closer look at the economics of housing prices suggests several reasons why the age of
a home has a complicated effect on the price. Both depreciation and vintage effects
suggest that the effect is almost certainly nonlinear and quite likely nonmonotonic.
Moreover, the decisions made about construction and renovation imply a heteroskedasticity
that is almost certainly related to age alone.

This heteroskedasticity is pervasive in many types of house price modeling. Consider the
analyses based on “sale-resale” methods, concentrating on houses with multiple sales.
Consider a house n, built at time i, and sold at time t:

    
Pint = α + βX + γAGE + δ j Dj + ε int

j
∑ , (11)

where Dj is a set of year dummies for when houses were built. Let the error term ε be

    ε int = ρn + κ t + λ AGE + µ int , (12)

where ρn is house specific, κt is year specific, λAGE is related to the house age, and µ is
uncorrelated. The resale method, with a one-year lag, nets out house-specific and vintage
effects, yielding

    ∆P = Pin,t +1 − Pint = γ + κ t +1 − κ t( ) + λ AGE+1 − λ AGE( ). (13)

Here, coefficient γ gives the effect of another year of age (the joint effect of depreciation
and house price inflation).

3 The small-sample properties of the iterative GLS estimator were examined using a 10 percent random sample
of the 8,476 sales. The parameter estimates in the smaller sample were similar to their large-sample
counterparts; however, the small-sample estimated parameter standard errors are more than three times
their large-sample counterparts. The absolute-value-of-the-residual iterative GLS procedure reduced the
standard error of the intercept by 6.4 percent in the linear dwelling age specification and by 1.0 percent in the
quartic specification.
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What can be said about the error term? There is no reason to believe that (κ t+1 − κ t) is
heteroskedastic. However, unless λ is a linear function of age, λAGE+1 − λAGE is likely to
be heteroskedastic. Thus, resale indices suffer from the problem of heteroskedasticity,
even if there is no variation in the duration between sales. Heteroskedasticity is even
more likely if the coefficients vary with time, as is found in most studies.

Our results support these conjectures. Using a large sample of housing transactions, we
observe that the empirical relationship between transaction price and dwelling age is
most sensitive to the dwelling age specification. The depreciation rates are nonlinear—
higher for new homes and then declining with dwelling age—as well as nonmonotonic.

This study introduces two iterative GLS procedures that have not been applied to hedonic
or appraisal analyses. These procedures accommodate heteroskedasticity by explicitly
modeling the residual variance. Introduced by Davidian and Carroll, these models
increase efficiency by reducing estimated standard errors, and they also influence point
estimates of dwelling age coefficients.

The results suggest at least two real-world applications. The more efficient estimators
are easily programmed for any regression-based appraisal package. Property tax asses-
sors may reduce the costs that may accompany unnecessarily large variance in point
estimates of property values.

The method may also be useful in the valuation of mortgage-backed securities. An
explicit, and efficient, estimate of house price variance among bundled properties, using
the method of Davidian and Carroll, may be quite useful in evaluating the overall risks
of securities that are backed by home mortgages.
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