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SUMMARY

This paper analyses a case in censored failure time data problems where some observations are po-
tentially censored. The traditional models for failure time data implicitly assume that the censoring
status for each observation is deterministic. Therefore, they cannot be applied directly to the potentially
censored data. We propose an estimator that uses resampling techniques to approximate censoring prob-
abilities for individual observations. A Monte Carlo simulation study shows that the proposed estimator
properly corrects biases that would otherwise be present had it been assumed that either all potentially
censored observations are censored or that no censoring has occurred. Finally, we apply the estimator
to a health insurance claims database. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Failure time models have become increasingly common in characterizing health services phe-
nomena. Researchers typically consider which appropriate hazard function to use, how to
handle censored samples, whether the assumption of eventual failure is merited, and which
variables a�ect the hazard. This paper discusses a class of problems in which at least some of
the sample observations are ‘probably censored’. Unlike failure times with observed censoring
information, censoring information for some treatment episodes is not observable by the end
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of the episodes due to the de�nition of the health-care episode length and the termination of
studies. These problems also arise in other scienti�c areas. Owing to unavailable or missing
censoring information for some treatment episodes, traditional failure time models for data
with given censoring information are not appropriate for modelling the distribution of the
episode data. Failure to account for censoring will generate biased duration lengths, and for
right-censored samples the estimates will be too small. However, treating all of the potentially
censored observations as censored will overcompensate for the censoring bias.
In this article, we propose a new method to analyse the probably censored data. The method

properly handles the missing censoring information in an accelerated failure time model. We
also apply the method to analyse mental health/substance abuse treatment episodes. Section
2 provides a detailed description of the de�nition of treatment episodes and reasons why
probably censored data may arise. Section 3 presents an accelerated failure time model for
treatment episodes and a new estimation method for the model that allows probably censored
data. Section 4 reports a simulation study to investigate the performance of the proposed
estimation method. In Section 5, the proposed model and method are applied to treatment
episodes constructed from a health insurance database with a detailed analysis. Section 6
provides further discussion and conclusions.

2. TREATMENT EPISODES

Episode de�nition and analysis have provided an intuitive yet elusive framework for analysing
health services utilization and costs. Utilization and costs generally begin when illness or
treatment episodes begin, and end when the episodes end, irrespective of the calendar. It is
important to understand episode lengths and patterns to determine personnel and facility needs,
and health care costs, and to assure health-care quality. Screening procedures or health-care
treatments that can prevent or shorten episodes a�ect health-care use and health-care costs.‡

Our analysis focuses on treatment rather than illness episodes. The distinction is important
because illness episodes, especially for chronic illnesses with vague symptoms and imprecise
beginning dates, may be di�cult to de�ne in terms of start, duration and conclusion. Treatment
episodes, in contrast, can be de�ned with beginning and ending treatment events.
Episodes are based on a 30-day break point. Starting with treatment initiation, an episode

includes all of the events that occur within 30 days of previous ones, so an episode may last
for months or even years. We use the 30 day cut-o� because several major agencies de�ne
proportion discharged from a treatment setting (particularly inpatient) and readmitted within
30 days as a key clinical ‘performance indicator’. Also, most of the agencies wish to see
patients transferred from more intensive care (inpatient, intensive outpatient) to less intensive
care settings (outpatient), again within 30 days of discharge. The fact that an individual
receives repeated treatments at intervals within 30 days of previous treatments indicates that
the episode is not yet completed. Goodman et al. present a detailed review of the literature
on episode de�nition [2].

‡Stern et al. [1] show that information on client characteristics available from inpatient stay records is useful
in predicting not only the length of inpatient stay but also the length of the subsequent community stay after
hospitalization. Their �ndings demonstrate that client characteristics may be used to target discharge planning for
those at greater risk of rapid readmission to inpatient care.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:000–000
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By this de�nition, an episode ends if there has been no treatment event for 30 days. Hence
a series of six outpatient visits, 28 days apart from each other are considered to be one episode
lasting 140 days (from the day of the �rst treatment to the day of the last one). However,
events separated by 31 days or more fall into separate episodes.
The study population was selected from a large health insurance claims database of 36 self-

insured employers, for all treatment events starting 1 January 1989, and ending 31 December
1991, so episode lengths have a distribution with a minimum of 1 day and a maximum of
1095 days. The database includes all claims of all bene�ciaries less than 65 years of age (to
avoid Medicare overlap) who incurred at least one drug abuse or alcoholism treatment event
in the 3-year period.
Drug abuse treatment episodes were de�ned when the initial event had a principal In-

ternational Classi�cation of Disease (ICD-9) diagnosis of 292 (drug psychoses), 304 (drug
dependence) or 305.1–305.9 (drug abuse). Alcoholism treatment was de�ned by an initial
principal ICD-9 diagnosis of 303 (alcohol dependence), 305.0 (alcohol abuse) or 291 (alco-
hol psychoses). Psychiatric comorbidities (ICD-9 codes 290, 293–299, 300–302 and 306–319)
were also identi�ed. Remaining diagnoses were de�ned as surgery (inpatient or outpatient), or
‘medical’ (all other groups de�ned through ICD-9 diagnoses). Obstetric-gynecological treat-
ment for women was excluded to address gender comparisons.
Inpatient events consist of all services provided between and including the �rst and last

dates of admissions involving at least an overnight stay. All other services constitute outpatient
events, as de�ned by the employer providing the data. Thus, �ve di�erent diagnostic categories
of treatment use are de�ned for both inpatient and outpatient care, for a total of 10 categories,
each to be analysed separately. This analysis examines the length of the �rst treatment episode
within the 3-year window.
Any episode with events occurring after 1 December 1991 may be right censored because

an unobserved event may occur after the end of the data collection window (31 December
1991), but within 30 days of a previous event, and thus be part of the episode. The length of
any episode starting between 1 and 31 January 1989 may also be right censored, because the
30-day treatment window may have begun before 1 January, before data collection began.
Assuming that no episodes are censored leads to downward biases in estimating median

lengths. However, assuming that all potentially censored episodes are censored almost certainly
biases episode lengths upward. Although one solution would be to drop all potentially censored
observations, we prefer an alternative approach because:

1. Omitting observations sacri�ces information. In our 3-year database (Table V) between
12.4 and 28.3 per cent of the episodes in the inpatient episode categories are potentially
censored. Among the outpatient categories, 44.6 per cent of the initial psychiatric episodes
are potentially censored, and hence potentially discarded.

2. Omitting observations may lead to selection bias by di�erentially deleting patients with
insurance coverage limitations. Moreover, speci�c diagnoses (often mental health or sub-
stance abuse) may be selectively deleted, again due to insurance limitations.

3. Potential censoring in this case occurs at the beginning or at the end of a calendar
year. Health insurance may limit utilization or expenditure levels by calendar year, so
utilization and/or costs may be concentrated at the beginning (pent up demand from the
previous year) or at the end of a year (exhausting the year’s bene�ts). Systematically
omitting such episodes will likely bias estimates of episode length, utilization and costs

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:000–000
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downward, leading to potentially serious �nancial consequences for providers and insurers
who use these estimates.

In the following sections, we specify a regression model for the episode data and we
propose a method to address the probable censoring.

3. PARAMETRIC FAILURE TIME MODELS FOR PROBABLY CENSORED
EPISODES

We seek to characterize the length of a speci�c episode de�ned by treatment and location,
denoted by T using the following log-linear model:

log T =X ′�+ Y ′�+ F ′�+ �W (1)

This is an accelerated failure time model. The unknown model parameters are �, �, �, �
and parameters in the distribution of random error W . Variables X ′ refer to individual level
indicators including subject’s age, gender and employment status. Variables Y ′ refer to coin-
surance and insurance deductible levels. With perfect information and with no variation among
employees in the �rm, these would be the de�nitive measures for the individual. Vector F ′

characterizes the employer where the subject works and is the primary insured, or has cover-
age as the dependent of a family member who works there. We characterize employers with
employer-speci�c year-speci�c measures such as mean age, mean employment status or mean
percentage male, for example, since employer health-care packages and policies may re�ect
the types of workers that are covered.
The distributions considered for T include Weibull (W follows the standard extreme value

distribution), lognormal (W follows the standard normal distribution) and gamma distributions.
More complicated distributions of T such as the extended generalized gamma distribution can
also be considered [3, 4]. In this article, we will use the generalized gamma (EGG) distribution
for length of an episode. The corresponding density function of W is

f(W )=
|q|

�(q−2)
(q−2 exp(qW ))q−2 exp(− exp(qW )q−2) (2)

where �(•) denotes the complete gamma function, and q is a free shape parameter. The
Weibull, lognormal and gamma distributions for T can be obtained as special cases of the
EGG distribution when q=1, 0 and q=�=1, respectively.
Let �i be a censoring indicator that equals 0 for right-censored observations and 1 for

uncensored observations. Given values of �i, the likelihood function is written as

L=
n∏

i=1
f(ti)�iS(ti)1−�i (3)

where f(t) and S(t) are the density and survival functions of T . However, treatment episodes
exemplify a class of responses in which censoring is probabilistic. An episode may begin 2
weeks before the end of the data collection period. Since all treatment within 30 days of the
episode initiation is considered as part of the episode, it is possible although not certain that
the episode is censored. Hence, the values of some of censoring indicators �i are unknown,
or these �i are random variables with Bernoulli distributions.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:000–000
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Probable censoring can be found in other applications as well. Hougaard [5] notes that
menopause is de�ned as the time of the last menstrual bleeding, but it is not possible to say
whether a particular occurrence of bleeding is the last until a whole lifespan has passed. Ob-
servers generally wait for 1 year before determining that menopause occurred at that time, but
if a woman dies after half a year without bleeding ‘it is forever unknown whether she should
count as having obtained menopause’. Alternatively, the estimated age at which menopause
occurs is uncertain.
Van der Laan and McKeague [6] refer to ‘missing censoring indicators’ rather than to

probable censoring. They propose an e�cient estimator of the survival function of a single
sample, and covariate e�ects are not allowed in the estimation. McKeague and Subramanian
[7] obtain another estimator of the survival function of a single sample, and extend it to
the Cox regression to model the e�ects of covariates. However, it appears di�cult, if not
impossible, to extend their method to model (1).
Van der Laan and Hubbard [8] and van der Laan and Robins [9] consider another example

of probable censoring when an event is reported with delay. In this example, monitoring times
U1¡U2¡ · · ·¡Uk−1¡T¡Uk and reporting times A1¡A2¡ · · ·¡Ak satisfy Aj=Uj if j¡k,
and Ak¿Uk . Suppose at analysis time C that death has not yet been reported. (i.e. Ak¿C)
and Uj−1¡C¡Uj. Analysts cannot be sure that death did not occur between Uj−1 and C
since they only know that T¿Uj−1. If they set C at Uj−1 and let T be censored at Uj−1, the
censoring variable is now a function of T , implying that censoring is no longer independent
of T , and leading to estimation biases. The authors propose inverse probability censoring
weighted (IPCW) estimators to address the problem.
As the authors indicate, the censoring status of an observed time in Reference [8] or

Reference [9] is either right censored or interval censored, while in our problem the status
is either right censored or uncensored. The di�erence between the two problems arises from
the two distinctive mechanisms that produce the probable censoring. Therefore, it is unclear
whether it is appropriate or not to apply methods for data with delayed report time to treatment
episodes in model (1).
In the econometric literature, Pohlmeier and Ulrich [10] and Santos Silva and Windmeijer

[11] �nd incomplete illness spells because the spells may have started before the observation
period, and/or may end after the observation period. Santos Silva and Windmeijer observe
that the observed number of spells S, and total number of visits V =

∑S
j=1Rj are likely to be

underestimated:
: : : The �rst obvious consequence is that S has to be interpreted as the number of
illness spells the individual su�ers during the observation period. Therefore, S is
larger than or equal to both the number of complete spells and the spells started in
that period, either of which would be more interesting to model : : : Rj should be
viewed as the number of visits from the jth spell that occurred during the observation
period, which may be smaller than the total number of visits in the jth illness spell
(P. 77).

Like Hougaard, they o�er no suggestions on how to address the problem.
Romeo [12] discusses problems when inconsistencies at the ‘seams’ between surveys make it

impossible to determine with certainty when one spell ends and the next begins. He develops
a duration model that uses questionnaire answers to quantify duration data inconsistencies
and he estimates the model for two di�erent surveys. However, his method is speci�c to the
particular databases, and is not readily applicable to the insurance claims used in our research.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:000–000
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In the method we propose here, let pi=P (�i=1), i.e. pi is the probability that the
individual is uncensored. Assuming that the �i are observed, the likelihood function of model
(1) can be written as

Ld(�|d)=
n∏

i=1
f(ti)�iS(ti)1−�ip�ii (1− pi)1−�i (3′)

However, some values of �i are not available. Let D be the collection of all possible values
of d=(�1; : : : ; �n). If nd is the number of probably censored patients, the size of D is 2nd.
The �nal likelihood function is

L(�)=
∑

d∈D
Ld(�|d)

If nd is too large, calculation of L(�) will be infeasible. One solution is to approximate it by
Monte Carlo methods. One approximation is

L(�) ≈ 2nd

r

r∑

j=1
Ld(�|dj)

where dj is randomly selected from D with respect to the uniform distribution that assigns
equal probability to each of the 2nd members in D, and r is the number of draws.
However, the Monte Carlo approximation approach to the likelihood function has some

limitations. Since we view �i as a random variable for the possibly censored observations,
we cannot estimate (3′) using existing procedures in SAS or other statistical packages. To
ease the computational burden, we propose a probit estimator that uses comparable episode
information to estimate censoring probabilities.
Consider the set of episodes that included December 1991 and were possibly censored.

Data available indicate starting date, episode length at the last event and episode type and
location. We propose to use episodes that included December 1989 (and December 1990) to
estimate the probability that an episode that displays a December 1991 event actually will
extend into the following (unobserved) month. If 1989 (or 1990) were in fact the last year
of the database, then episodes that extended into 1990 (1991) would be censored—episodes
that did not extend into 1990 (1991) would not. The probit model can be used to make the
1989 (1990) prediction, and then applied to December data for 1991.
Our database contains two relevant types of December 1989 (and 1990) episodes for esti-

mating censoring for 1991 episodes. They are noted in Figure 1.

1. Type O (ongoing) episodes started before 1 December and were ongoing at the date of
the last observed event (after 1 December), thus possibly censored. We know episode
length on that date. Censoring probabilities for episodes extending into December 1991,
that started prior to 1 December 1991, will be predicted by probit regressions for 1989
and 1990 type O episodes.

2. Type A (after) episodes started after 1 December. Since this starting date was within
30 days of the probable censoring date, these episodes were possibly censored. As with
the type O episodes, we know how long these episodes lasted, but we do not know the
sequencing of events. Censoring probabilities for December 1991 episodes that started
after 1 December 1991 will be predicted by probit regressions for 1989 and 1990 type
A episodes.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:000–000
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Figure 1. Probit censoring adjustments for end-of-year episodes.

The probit analyses determine whether the 1989 (and 1990) episodes were censored.
For type O episodes:

Pr(�=1)= �0 + �∗1 Episode length (as of 12=1)

+�∗2 Episode location (inpatient or outpatient)

+
k∑

type=1
�3k Treatmentk (4a)

For type A episodes:

Pr(�=1)= �0 + �∗1 Start date

+�∗2 Episode location (inpatient or outpatient)

+
k∑

type=1
�3k Treatmentk (4b)

For episodes ongoing on 1 December 1991 we apply the type O predictor. For episodes
starting after 1 December 1991 we apply the type A predictor.
The alternative estimator for episodes starting within the �rst 30 days of the data win-

dow (1–30 January 1989) is analogous. We use January 1990 and January 1991 episodes to
generate censoring probabilities for January 1989.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:000–000
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The estimation process follows this sequence:

1. Assign probability values to the possibly censored observations.
2. Draw from a probability distribution to assign coding as either censored (�=0) or un-
censored (�=1) to possibly censored observations. Over repeated drawings individual
observations will approach their asymptotic probability of being censored.

3. Estimate equation (1) and calculate survival rates.
4. Repeat Steps 2 and 3 to build a distribution of medians, vectors of �, �, � and � terms,
and 95 per cent con�dence intervals around them.

Based on likelihood function (3′), one could theoretically estimate equations (1), (4a) and
(4b) jointly. Such joint estimation is not now tractable, but our proposed iterative probit
method is equivalent to using (3′) except that pi is estimated separately by the probit esti-
mator.

4. A SIMULATION STUDY

Since the proposed estimator is new, we present a Monte Carlo simulation to demonstrate its
properties. We generate a sample of 5000 episode lengths using the random number generator
with

T =e2:4055e�W or log T =2:4055 + �W (5a)

where W is an error term. This generates a median of approximately 11 days and a mean of
about 30 days (both �gures are consistent with our data on health-care treatment episodes). We
use a lognormal distribution in the simulation because it generally characterizes our episode
distribution, and it permits a non-monotonic hazard function.
A second experiment adds a (0; 1) binary variable with a mean of 0.5 and a coe�cient

of 0.1, representing either a gender or a treatment e�ect of approximately 10 per cent.
We again specify the parameters to provide a median of 11 days and a mean of
30 days:

T =e2:3537+0:1∗X e�W or log T =2:3537 + 0:1X + �W (5b)

Again, we use the standard normal error term.
We randomly assign each of the 5000 lengths to a date between 0 and 1095 (approximating

a 3 year data window), and we randomly assign (probability =0:5) each date as the episode’s
starting or the ending date. We then assign ‘possible censoring status’ if the episode started:

1. before date 0 or extended past date 1095. This would occur, for example, if we drew a
60-day episode that ended on 15 February 1989 (thus extending back before 1 January
1989). We assign an ‘observation date’ by drawing randomly from a uniform distribution
over the �rst 30 days of January (1989).

2. between dates 0 and 30, or between dates 1065 and 1095. We assign ‘observed start or
end dates’ by drawing from a uniform distribution between the starting date and either
day 1 or day 1065, as applicable.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:000–000
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This process provides those lengths that we would see if there were no censoring, or true
episode lengths, and those lengths that are recorded due to episode censoring, or observed
episode lengths.
We then estimate four probit regressions using data from dates 335–395, and dates 700–760,

as speci�ed in equation (4a) or (4b). The probit regressions calculate a censoring probability
for each ‘possibly censored’ data point. We use that probability to assign ‘censored’ status
and estimate a duration model, conditional on the vector of variable � generated by the probit
probability; we repeat the process 25 times for each probit. We replicate the entire process
(generate data, estimate probit regressions, assign censored status, estimate parameters) 500
times.
We evaluate the estimator properties using the following parameters and medians:

1. True sample medians.
2. ‘Almost true’ (AT)—estimated if the true (uncensored) lengths were known.
3. Uncensored (NC)—estimated if the observed episode lengths were analysed with no
censoring adjustment.

4. All-censored (AC)—estimated if the observed episode lengths were analysed assuming
that all potentially censored lengths were, in fact, censored.

5. Probably censored (PC)–estimated using the probable censoring method.

Table I(a) evaluates equation (5a). We summarize the estimates with the mean of the
mean estimates, and the median of the median estimates. We evaluate them with MSE (mean
squared error—for the mean relative to the true value), and bias (for both the mean and the
median estimates, relative to the true value).
The AT model is the ‘gold standard’ because it replicates the true values. Of the four

models, the AT model provides the minimum MSE and the smallest biases. However, it
contains information on the true lengths that is not available to the analyst.
By MSE standards, PC is as good as AT in estimating the intercept and only slightly

worse in estimating the median. It is much better than either NC or AC. With respect to
bias, PC is slightly worse than AT by either the mean or the median measure. PC bias
measures are between one-eighth and one-sixteenth the size of the NC and AC
measures.
Table I(b) compares the various estimators for the case in which the covariate X is intro-

duced. All three of the models (NC, AC and PC) provide good estimates of the intercept and
the � parameter, based on bias calculation. Both the NC and the AC estimates of the intercept
and � have smaller MSEs than the PC estimate, presumably because the PC estimate does
more random sampling. However, the PC estimator provides the best estimates of the median
by MSE criteria, only slightly larger than AT, and one-�fth to one-twelfth as large as NC
and AC.
Regarding bias, the mean of means and the median of medians for PC compare most

favourably with the AC and the NC estimators. For medians the mean bias is −0:0698 days
(−0:6 per cent of the true median), compared with −0:4596 days (−4:2 per cent) for the NC
estimator, and +0:7761 days (+7:1 per cent) for the AC estimator.
In sum, the PC parameter estimates compare favourably with other methods, and the es-

timated medians are closer to the true medians than models which assume that all possibly
censored observations are censored (AC), or that none are (NC).

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:000–000
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5. APPLICATION TO TREATMENT EPISODES

This section presents our empirical results when applying the PC estimator to the database.
Table II shows the probit censoring adjustments. Tables III and IV present outpatient and
inpatient episode duration estimates. Table V compares the survival rates across a wide range
of inpatient and outpatient episodes and across censoring speci�cations.

5.1. Probit censoring adjustments

Table II displays the probit censoring adjustments. All were estimated with two years of data.
For type O—December episodes estimated with 1989 and 1990 data, the positive coe�cient
on EPS LENGTH (0.0027) indicates that episodes of greater length on December 1 are more
likely to extend past 31 December. This implies censoring when the probit equation is applied
to possibly censored 1991 observations. Inpatient episodes, with a coe�cient on EPS LOC of
−0:2661, are less likely to imply censoring. ALC, DRUG, PSYCH or MED all imply more
likely censoring than the omitted surgery category.

Table II. Probit estimate of censoring probabilities.

Type O—December Type O—January

Variable Coe�cient Std. Error Coe�cient Std. Error

INTERCEPT −0.2771 0.0508* −0.2561 0.0520*
EPS LENGTH 0.0027 0.0001* 0.0028 0.0001*
EPS TYPE −0.2661 0.0474* −0.0424 0.0456
ALC 0.2698 0.0615* −0.1302 0.0609*
DRUG 0.2401 0.0710* −0.1708 0.0686*
PSYCH 0.3852 0.0594* −0.0040 0.0585
MED 0.1417 0.0535* 0.0078 0.0544

Type A—December Type A—January

Variable Coe�cient Std. Error Coe�cient Std. Error

INTERCEPT −10.9882 0.6391* 0.0263 0.0553
START 0.0303 0.0018* −0.0320 0.0016*
EPS TYPE 0.5532 0.0617* 0.7002 0.0560*
ALC 0.4457 0.0667* 0.1676 0.0630*
DRUG 0.4893 0.0777* 0.0993 0.0713
PSYCH 0.5564 0.0674* 0.1706 0.0638*
MED 0.0316 0.0533 −0.0151 0.0530

*Indicates 5 per cent signi�cance.
START—episode start date (January 1= 1; December 31= 365).
EPS LENGTH—length of type O episode in days on 1 December (after 31 January).
EPS TYPE—1 if inpatient; 0 otherwise.
ALC—1 if initiating event was alcohol treatment; 0 otherwise.
DRUG—1 if initiating event was drug treatment; 0 otherwise.
PSYCH—1 if initiating event was psychiatric treatment; 0 otherwise.
MED—1 if initiating event was medical treatment; 0 otherwise.
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Table III. Outpatient drug episode length estimates (EGG).

(2) PC (3) PC (4) AC
95 per cent 95 per cent model

Variable (1) PC median con�dence interval con�dence interval estimates

Employee
INTERCEPT 3.0090 2.5255 3.5052 2.9295
PT MALE 0.0115 −0.0348 0.0581 −0.0283
PT AGE −0.0008 −0.0025 0.0010 −0.0005
PT HRLY 0.0698 0.0183 0.1274 0.0411
PT ACTIVE 0.3309 0.2713 0.3850 0.4262*
PT SELF 0.3216 0.2747 0.3696 0.3943*
EPS STR0 −0.0010 −0.0010 −0.0009 −0.0020*
EPS CPR 0.8704 0.7168 1.0252 1.1891*
EPS DCT 0.0051 0.0047 0.0055 0.0044*

Employer
MALE AVG 1.4497 0.9914 1.9316 1.4989
AGE AVG −0.0518 −0.0628 −0.0416 −0.0361*
HRLY AVG −0.0331 −0.1509 0.0797 −0.1580*
ACTV AVG −0.5387 −0.7427 −0.3159 −0.3410
SELF AVG 1.0271 0.8342 1.2117 1.0132
CPR AVG −1.4843 −1.7872 −1.2227 −2.2913*
DCT AVG −0.0073 −0.0081 −0.0064 −0.0065

SCALE 1.9263 1.9062 1.9469 2.0567*
SHAPE 0.1066 0.0443 0.1554 0.0292*

Survival rate (days)
Median 11.30 10.95 11.62 15.97*

*All-censored (AC) point estimate lies outside 95 per cent con�dence interval of PC point
estimate.
PT MALE—1 if patient is male; 0 otherwise.
PT AGE—patient age in years.
PT HRLY—1 if the patient is an hourly employee; 0 otherwise.
PT ACTVE—1 if the patient is currently employed; 0 otherwise.
PT SELF—1 if the patient is the primary bene�ciary; 0 otherwise.
EPS STR0—starting date of episode (1 January 1989= 1;31 December 1991= 1065).
EPS CPR—episode coinsurance rate (0= no out-of-pocket; 1= full).
EPS DCT—episode deductible in dollars.
MALE AVG—employer (year-speci�c) mean of covered employees who are male.
AGE AVG—employer (year-speci�c) mean age of covered employees.
HRLY AVG—employer (year-speci�c) mean of hourly employees.
ACTV AVG—employer (year-speci�c) mean of currently employed subjects.
SELF AVG—employer (year-speci�c) mean of employees who are primary bene�ciaries.
CPR AVG—employer (year-speci�c) mean of coinsurance rate.
DCT AVG—employer (year-speci�c) mean deductible payment.
TYP AVG—employer (year-speci�c) mean of inpatient versus outpatient episode.
SCALE—statistical parameter �.
SHAPE—statistical parameter q.
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Table IV. Inpatient drug episode length estimates (EGG).

(2) PC (3) PC (4) AC
95 per cent 95 per cent model

Variable (1) PC median con�dence interval con�dence interval estimates

Employee
INTERCEPT 3.4202 3.2633 3.5788 3.4573
PT MALE −0.0442 −0.0624 −0.0257 −0.0214*
PT AGE −0.0077 −0.0085 −0.0068 −0.0079
PT HRLY −0.1388 −0.1591 −0.1193 −0.1347
PT ACTVE 0.1628 0.1385 0.1846 0.1685
PT SELF 0.0988 0.0831 0.1140 0.0992
EPS STR0 −0.0002 −0.0002 −0.0002 −0.0004*
EPS CPR −1.1357 −1.2387 −1.0369 −1.0933
EPS DCT 0.0003 0.0003 0.0004 0.0003

Employer
MALE AVG 0.6569 0.5272 0.7932 0.7547
AGE AVG 0.0051 0.0011 0.0088 0.0052
HRLY AVG 0.1530 0.1198 0.1877 0.1648
ACTV AVG −0.3271 −0.4062 −0.2522 −0.3485
SELF AVG −0.3704 −0.4407 −0.2945 −0.3581
CPR AVG 0.6762 0.5220 0.8382 0.6251
DCT AVG −0.0007 −0.0009 −0.0006 −0.0008

SCALE 0.8712 0.8651 0.8770 0.8864*
SHAPE 0.5194 0.5051 0.5348 0.5033*

Survival rate (days)
Median 26.06 25.85 26.28 27.93*

*All-censored (AC) point estimate lies outside 95 per cent con�dence interval of PC point
estimate.
PT MALE—1 if patient is male; 0 otherwise.
PT AGE—patient age in years.
PT HRLY—1 if the patient is an hourly employee; 0 otherwise.
PT ACTVE—1 if the patient is currently employed; 0 otherwise.
PT SELF—1 if the patient is the primary bene�ciary; 0 otherwise.
EPS STR0—starting date of episode (1 January 1989= 1;31 December 1991= 1065).
EPS CPR—episode coinsurance rate (0= no out-of-pocket; 1= full).
EPS DCT—episode deductible in dollars.
MALE AVG—employer (year-speci�c) mean of covered employees who are male.
AGE AVG—employer (year-speci�c) mean age of covered employees.
HRLY AVG—employer (year-speci�c) mean of hourly employees.
ACTV AVG—employer (year-speci�c) mean of currently employed subjects.
SELF AVG—employer (year-speci�c) mean of employees who are primary bene�ciaries.
CPR AVG—employer (year-speci�c) mean of coinsurance rate.
DCT AVG—employer (year-speci�c) mean deductible payment.
TYP AVG—employer (year-speci�c) mean of inpatient versus outpatient episode.
SCALE—statistical parameter �.
SHAPE—statistical parameter q.
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Table V. Comparison of survival rates in days across speci�cations (EGG).

Inpatient drug Outpatient drug

NC PC AC NC PC AC

25 per cent 44.12 46.37 50.17 25 per cent 32.85 40.89 63.94
50 per cent—median 24.76 26.06 27.93 50 per cent—median 9.75 11.30 15.97
75 per cent 12.86 13.62 14.48 75 per cent 2.71 3.02 3.99
95 per cent 4.23 4.58 4.83 95 per cent 0.38 0.43 0.54

Uncensored 2031 1919 1756 Uncensored 2292 2041 1690
Censored 0 112 275 Censored 0 251 602
Per cent censored 0.00 5.53 13.54 Per cent censored 0.00 10.96 26.27

Inpatient alcohol Outpatient alcohol
25 per cent 44.53 46.74 50.66 25 per cent 30.61 38.46 57.75
50 per cent—median 24.03 25.14 26.94 50 per cent—median 8.92 10.56 14.70
75 per cent 11.91 12.43 13.12 75 per cent 2.55 2.90 3.74
95 per cent 3.60 3.76 3.84 95 per cent 0.41 0.45 0.52

Uncensored 3044 2887 2667 Uncensored 4180 3735 3147
Censored 0 157 377 Censored 0 445 1033
Per cent censored 0.00 5.16 12.39 Per cent censored 0.00 10.65 24.71

Inpatient psych Outpatient psych
25 per cent 76.37 79.57 89.89 25 per cent 75.87 115.37 269.15
50 per cent—median 38.97 39.68 43.90 50 per cent—median 25.06 30.68 64.42
75 per cent 18.10 18.16 19.63 75 per cent 6.33 7.44 13.99
95 per cent 4.90 4.89 5.12 95 per cent 0.46 0.81 1.28

Uncensored 432 395 357 Uncensored 2484 1930 1376
Censored 0 37 75 Censored 0 554 1108
Per cent censored 0.00 8.55 17.36 Per cent censored 0.00 22.31 44.61

Inpatient surgery Outpatient surgery
25 per cent 42.26 52.32 72.88 25 per cent 16.92 20.34 29.70
50 per cent—median 17.62 20.31 24.75 50 per cent—median 5.37 6.12 8.26
75 per cent 7.03 7.93 8.9 75 per cent 1.70 1.84 2.30
95 per cent 1.72 2.06 2.24 95 per cent 0.33 0.33 0.36

Uncensored 152 130 109 Uncensored 2536 2301 1942
Censored 0 22 43 Censored 0 235 594
Per cent censored 0.00 14.25 28.29 Per cent censored 0.00 9.26 23.42

Inpatient medical
25 per cent 33.91 39.27 46.66
50 per cent—median 12.73 13.99 15.61
75 per cent 4.78 5.15 5.52
95 per cent 1.17 1.29 1.35

Uncensored 307 280 254
Censored 0 28 53
Per cent censored 0.00 8.96 17.26
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For the type A—December adjustment, also estimated for 1989 and 1990, the coe�cient
of 0.0303 for episode starting date (START) implies that the later in December the episode
starts, the more likely it will extend past 31 December. Inpatient episodes are more likely
to imply censoring, and again ALC, DRUG, PSYCH or MED are all more likely to imply
censoring than the (omitted) surgery category.
The January adjustments estimated for 1990 and 1991, to be applied to episodes starting

in January 1989, are qualitatively similar. The type O—January adjustment implies that the
longer the current episode lasts after 31 January, the more likely that it will have started
before 1 January, implying censoring. The type A—January adjustment, with a negative start
date coe�cient, indicates that the later in January the episode started, the less likely that it
will have started before 1 January. Note that the coe�cients of the start dates for both type
A adjustments are similar in absolute impacts (0.0303 for December; 0.0320 for January).
This implies that the closer the start date to the last (for December) or �rst (for January)
day of the window, the more likely it will either extend past 31 December, or start before
1 January. When applied to the possibly censored episodes, this increased likelihood implies
more probable censoring.

5.2. Outpatient and inpatient duration estimates

Having estimated the censoring probability equations, we draw from the probability distribu-
tion to assign coding as either censored (�=0) or uncensored (�=1). We estimate equation
(1) using the EGG distribution.§ The process is repeated 1000 times for each diagnosis-
location combination to generate distributions of parameter estimates, medians and con�dence
intervals. Tables III and IV provide detailed estimates of drug treatment episodes. Table V
compares estimated median lengths by diagnosis-location categories.
Table III (outpatient drug care) and Table IV (inpatient drug care) display the episode length

determinants. Column 4 in each table presents the AC model with variables separated into
employee and employer categories. In Table III, for example, a 0.1 increase in employer male
percentage increases outpatient episode length by 16 per cent (e0:1×1:4989); holding employer
constant, men’s (PT MALE=1) episodes are 2.8 per cent shorter (e−0:0283) than women’s
(PT MALE=0).
Continuing with Table III, the distinction between employee and employer variables has a

particular interpretation for both coinsurance rates and deductibles. An employer that raises its
coinsurance rate by 0.1 for all employees will see increases in variables EPS CPR (Employee
e�ect), with coe�cient +1:1891 and CPR AVG (Employer e�ect), with coe�cient −2:2913.
The net impact will be a 9.9 per cent decrease (e0:1×(1:1891−2:2913)) in episode length. A $100
increase in insurance deductible has similar joint e�ects, with a net 18.9 per cent decrease
(e100×(0:0044−0:0065)) in episode length. Assuming that all potentially censored observations are
censored yields an estimated AC median of 15.97 days.
The PC adjustment lowers the estimated median to 11.30 days, or about 4.7 days shorter

than the AC estimate. The non-parametric 95 per cent con�dence interval is plus or minus
0.35 days, and is approximately symmetric.

§All parameters were estimated with the SAS LIFEREG procedure. A set of nested hypotheses (available from the
senior author) shows the EGG distribution to be superior to the simpler ones.
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We also compared PC median estimates of �, � and �, and their estimated 95 per cent
con�dence intervals to the AC model. Finding that these medians di�er from the AC model
estimate does not imply that they (or the AC estimates) di�er signi�cantly from 0, but it
does indicate that they di�er, and that the medians provide consistent estimates of the param-
eter values. Consider the PC median coe�cient value of 0.3216 if a patient is the primary
bene�ciary (PT SELF). The resampling method suggests that the PC estimate of 0.3216 is
preferable to the AC coe�cient of 0.3943, which lies outside the 95 per cent con�dence
interval (0.2747–0.3696).¶
Table IV presents similar �ndings for inpatient drug estimates. The inpatient estimates

also use the EGG distribution. There are separable employee and employer e�ects. Like the
outpatient episodes, the joint e�ects of coinsurance rate or deductible increases reduce episode
lengths. The PC median of 26.06 days is 1.9 days (or about 6.7 per cent) shorter than the
AC estimated median. As with the outpatient episodes, the median estimates of the �, � and
� parameters in this adjusted model di�er slightly from the AC estimates.

5.3. Survival rates

Table V compares censoring estimators for nine diagnosis-location combinations.|| Looking
�rst at inpatient drug episodes, up to 13.54 per cent may be censored. Ignoring the censoring
provides the NC median estimate of 24.76 days; assuming that all of the potentially censored
observations are censored provides the AC median of 27.93 days, or about 12.8 per cent
higher. The problem is more severe with outpatient drug care since larger percentages of the
outpatient episodes are potentially censored. The estimated AC median is 15.97 days, or 63.8
per cent higher than the NC median.
The PC adjustment �nds 5.53 per cent of the inpatient drug episodes to be censored with a

corresponding median length of 26.06 days. Again, for the outpatient drug care, the di�erences
are more substantial. The probit adjustment assigns 251, or 41.7 per cent of the 602 potentially
censored observations to censored status; the corresponding PC median of 11.30 days is 15.9
per cent higher than the NC median (9.75 days) rather than 63.8 per cent higher (15.97 days),
as calculated by AC.
The table summarizes estimated survival rates across the nine episode categories describing

treatment initiation with NC, PC and AC. In all cases, estimates that adjust for censoring
probability fall between the ‘no censoring’ and the ‘all-censoring’ estimates.

6. DISCUSSION AND CONCLUSIONS

This article addresses probable censoring in the estimation of hazard functions. It arises be-
cause the very nature of health-care treatment episodes allows for time to elapse between
observed events. If the observation ‘window’ closes before the appropriate period of time

¶To compare the resampled median estimates of coe�cient � to 0, one could estimate a resampled standard error
as the median of the 1000 standard errors.
||Outpatient medical care had 16540 observations, almost 4 times the next largest category (outpatient alcohol).
Large sample computing constraints prevented our estimating Table V survival rates.
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lapses, then the duration may be censored. However, assuming that the duration is censored
with a probability of one will almost certainly bias duration estimates upward.
We use resampling methods to calculate vectors of �, �, � and � terms, and 95 per cent

con�dence intervals. Potentially censored observations are assigned censoring probabilities
based on a probit selection model that accounts for treatment diagnosis and location.
The resulting estimates indicate that just as ignoring the censoring problem provides es-

timated medians that are too low, assuming all of the potentially censored observations are
censored leads to medians that are too high. The method proposed to address the probable cen-
soring can e�ectively correct the biases and provide appropriate estimates of medians. From
a health-care system perspective, where episode length is related to utilization and costs, this
�nding is most important for planning and resource allocation as it helps predict individuals’
exposures to the system.
This method may apply to a wide range of applications in which censoring is probabilistic

rather than certain. Spells of unemployment or employment, or episodes of illness or health,
may be ongoing at times of visits to employment agencies, or physicians, prior to the end of
data collection periods. Assuming that all are censored may lead to biases that are potentially
as serious as assuming that none are censored. This article provides a method that addresses
the issue and suggests an estimator that is easy to use.
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