12 1. Introduction

data structure. Our principle concern will be with the estimation of causal
and non-causal parameters in longitudinal studies in which data are avail-
able on all time dependent covariates that predict both (i) subsequent
response and (ii) subsequent treatment and/or censoring, so that the data
are CAR.

As discussed above, we can use our general estimating function method-
ology to obtain n'/2— consistent estimators fi of a smooth parameters u
of a very large non- or semiparametric model for the law Fx of a high-
dimensional X from CAR data Y, provided either that the CAR mechanism
G is known or that we can correctly specify a lower dimension model for
G. Now, in observational studies in which data are missing by happen-
stance and subjects self-select treatment, even if we are willing to assume
the data are CAR, nonetheless the density g of Y given X will not be
known; further, we cannot be certain the lower dimensional model we as-
sume for g is correct. Thus we cannot be assured that our estimator [
is consistent. Because of this uncertainty, we might choose to specify a
lower dimensional (say a fully parametric) working submodel f (X;u,n)
of our large non- or semiparametric model for Fix and then estimate the
finite dimensional parameters (u,7) based on the data Y by parametric
maximum likelihood. The difficulty with this approach is that, if the para-
metric submodel f (X;p,n) is misspecified, the parametric MLE of p will
be inconsistent. However, because of the curse of dimensionality, we can-
not obtain estimators with reasonable finite sample performance if we do
not place additional modelling restrictions on either the CAR mechanism
G or on our large non- or semiparametric model for Fx. Hence, the best
that can be hoped for is to find a doubly robust estimator. An estimator is
doubly robust (equivalently, doubly protected) if it is consistent asymptot-
ically normal (CAN) under the assumption of CAR when either (but not
necessarily both) a lower dimensional model for G or a lower dimensional
model for Fx is correct. A doubly robust estimator is locally semiparamet-
ric efficient (LSE) if it is the asymptotically most efficient doubly robust
estimator of u when both the lower dimensional models for G and Fx
happen to be correct.

It turns out that, as discussed by Scharfstein, Rotnitzky, and Robins
(1999), Neugebauer, van der Laan (2002), and later in this chapter, with
a little care, we can guarantee that the aforementioned LSE estimator of
¢ in the semiparametric model that assumes a correct lower dimensional
model for g is actually a LSE doubly robust estimator. Specifically the
aforementioned LSE estimator of p based on our general estimating func-
tion methodology actually depends not only on an estimate of g but also on
an estimate of the law Fx. Further, because of the curse of dimensionality,
it is necessary that Fx be estimated using a lower dimensional working
submodel. If the model for g is correct, our LSE estimator is CAN for u
regardless of whether our working submodel for Fx is correct. However, if
this submodel is correct, our estimator of u attains the efficiency bound for

P

1.1. Motivation, Bibliographic History, and an Overview of the book. 13

‘;he gemiparametric model that assumes a correct lower dimensional model
or G.

Now, if we take care that our estimate of Fx under the lower dimen-
sional submodel is the MLE and thus depends only on the Fy part of the
likelihood, then the estimator of i considered in the previous paragraph is
actually a LSE doubly robust estimator; in particular, it is CAN for u even
if the model for g is incorrect, provided the lower dimensional (say, para-
metric) submodel for Fx is correct. Even more surprisingly, Scharfstein,
Rotnitzky, and Robins (1999) and Neugebauer, and van der Laan (2002)
show that, when the lower dimensional (say, parametric) model for Fx hap-
pens to be correct, this doubly robust estimator of u, like the parametric
MLE, may be CAN, even when u is not identified under the observed data
model in which the true density g of Y given X is completely known. Non-
identifiability of u in this latter model occurs when the support set for Y’
at each value of X under the known density g is very small. See Section 1.6
for details. Thus, in CAR models, it is best to (i) simultaneously model the
coarsening (i.e., censoring and/or treatment) mechanism and the law of the
full data with lower dimensional models, (ii) estimate them both by max-
imum likelihood separately from the two parts of the likelihood, and (iii)
finally obtain a LSE doubly robust estimator with our general estimating
function methodology (see e.g., Scharfstein, Rotnitzky, and Robins, 1999,
and Robins, 2000). Yu, and van der Laan (2002) implement this strategy
and provide explicit algorithmic and computational suggestions: See Sec-
tion 1.6. This strategy, however, is not always computationally feasible;
in that case, alternative approaches to doubly robust estimation are avail-
able as developed in Robins (2000) and Tchetgen and Robins (2002). See
Sections 3.5 and 6.4.

Certain semiparametric models in addition to CAR censored data models
also admit doubly robust estimators. As far as we are aware, Brillinger
(1983) was the first to call attention to and provide examples of DR-like
estimators. Other examples are given by Ruud (1983, 1986), Duan and
Li (1987, 1991), Newey (1990), Robins, Mark and Newey (1992), Ritov
and Robins (1997), and Lipsitz and Ibrahim (1999). Scharfstein, Rotnitzky,
Robins (1999), Robins (2000), and Neugebauer, van der Laan (2002) went
F)eyond individual examples to provide a broad theory of double robustness
In missing data and counterfactual causal inference models in which the
data was CAR. Robins, Rotnitzky, and Van der Laan (2000) extended
the results in Scharfstein, Rotnitzky, Robins (1999), and Robins (2000) to
cover DR estimation in any model in which locally variation-independent
(possibly infinite-dimensional) parameters x and v index the law of the
observed data, the likelihood factorized as L (5,79) = L1 (k) L2 (), and the
smooth finite-dimensional parameter y (x, v) = p (k) only depended on x.
f‘\ll of the above mentioned examples are special cases of the general results
In Robins, Rotnitzky, van der Laan (2000). Robins and Rotnitzky (2001), in
the most comprehensive investigation of double robustness to date, provide



