16 1. Introduction

of realistic and difficult data structures and models commonly encountered
in biostatistical and epidemiologic practice. It is our belief that a reader
who has mastered the techniques described in this book will be ready to
attack the many possible variations of the examples covered in the book.

1.2 Tour through the General Estimation Problem.

In both observational and experimantal studies, the full (equivalently, com-
plete) data structure X that one would wish to collect is often incompletely
observed on some, possibly all, subjects. In such cases, we say that the study
data is subject to censoring or missingness. As an example, in a study of
a cohort of HIV infected subjects, the full data X on a subject might con-
sist of the time from seroconversion to the development of AIDS, the time
from seroconversion to death, and the time-dependent covariate processes
encoding a subjects CD4 lymphocyte count, viral load, and antiviral treat-
ment history from seroconversion to death. Due to the finite duration of
the study, to limitations of funds and resources, and/or to the logistical
impossibility of performing hourly or even daily laboratory tests, X is only
partially observed. We denote a unit or subject’s full data structure with
random variable X which may be incompletely observed. Rather we observe
the random variable

Y = (X, C) for a known many-to-one-mapping ®, (1.-1)

where @ is a known function and C is the censoring or missingness variable
that determines what part of X is observed. The following examples should
help clarify the notation.

Example 1.1 (Repeated measures data with missing covariate)
Let Z be a p-dimensional vector of outcomes and let E be a vector of
accurately measured exposures based on blood tests. Let V be a vector
of variables that one wants to adjust for in a regression model (such as
confounding factors for the causal effect of E on Z). Our goal is to estimate
the regression parameters o = (a,...,ax) in a model for the conditional
mean of Z, given X* = (E, V),

Z=g(X*|a)+e E(e|X*)=0, (1.2)

where ¢ is a p-dimensional vector of residuals and ¢g(X* | @) = (g1(X™* |
a),...,9p(X* | @)) is a known function and a is an unknown parameter to
be estimated.

Let E* be a vector of poorly measured surrogates for E obtained on
each subject from questionnaire responses. In general one would not wish
to adjust for these surrogates E* in the regression model (1.2) because of
the possibility of differential misclassification (i.e., the possibility that E*
and Z may be conditionally dependent given E and V). However if it is
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very expensive to measure F it may be feasible to obtain data on E only on
a subset of the study subjects. In that case, data on on E* may be useful
either to explain informative missingness and/or to recover information
from the censored observations (i.e., from the observations lacking data on
E) Let A be the indicator that E is observed; Then C = A and Y =
®(X,C) = (C,CX + (1 - C)W), where W = (Z,V, E*).

Example 1.2 (Repeated measures data with right-censoring) Con-
sider a longitudinal study in which each subject is supposed to be monitored
at time points 0,...,p, but some subjects drop out before they reach
the endpoint p. Let X = {X(t):t=0,...,p} represent the full data
structure on a subject, where X(¢) is typically a multivariate vector. Let
X(t) = (X(0),...,X(t)) denote the history through time t. We assume
that the measurements X(t) can be divided in outcomes Z(t), covariates
X*(t) that one wants to adjust for in a regression model, and extraneous
covariates V*(¢). Let Z = (Z(0),...,Z(p)), X* = (X*(0),...,X*(p)), and
V* = (V*(0),...,V*(p)). Consider a regression model

Z=9(X*|a)+e E(]| X*)=0, (1.3)

where g(X* | @) = (9o(X* | @),...,9p(X* | a)) and g;(X* | a) only
depends on the history (X*(0), ..., X*(j)) of X* up to point j, j =0,...,p.
For example, if X* is univariate, we might have

9:(X* | @) = ap + st + 22 X*(0) + a3(X* (t) — X*(0)). (1.4)
For other longitudinal data models, we refer to Diggle, Liang and Zeger
(1994). Our goal is to estimate the regression parameters a = (0a,...,aK).

Let C be the discrete drop-out time with values in {0,...,p}. The
observed data structure is given by ¥ = &(X,C) = (C,X(C) =
(X(0),...,X(C))). In other words, if C = 7, then the subject was followed
up to (and including) visit j. O

We assume throughout that we have n study units (or subjects) and
observe n identically and independently distributed observations (copies)
Y1,...,Y, of the random variable Y. We will suppose that the full data
structure distribution Fx of X is known to be an element of a specified
full data structure model MF and that there is a Euclidean parameter
k= u(Fx) € R* of interest. For instance, in both Examples 1.1 and 1.2,
# is the regression parameter.

1.2.1 Estimation in a high-dimensional full data model

Our estimating function methodology for estimating the k-dimensional pa-
Tameter p based on the observed data Y3i,...,Y, requires that we can
find a class of k-dimensional estimating functions whose components, when
ev;xlfated at any Fx € MF, are elements of the orthogonal complement
T, (Fx) of the nuisance tangent space TF..(Fx) in model MF at Fy.




