18 1. Introduction

To formalize this, recall that an unbiased estimating function D(X | p)
that does not depend on any nuisance parameters is a k-dimensional vec-
tor function of the data X and the parameter p € RF that has mean zero
under all Fx in MF; that is, Er, D(X | u(Fx)) = 0. More generally, an
estimating function D(X | u, p) can also depend on a parameter p whose
domain is the set R = {p(Fx); Fx € M} of possible values of a nuisance
parameter p(Fx). In this case, D(X | p, p) is unbiased if

Epy D(X | p(Fx), p(Fx)) = 0 for all Fx € M”. (1.5)

An estimating function D(X | g, p) of the dimension of p yields an estimat-
ing equation 0 = Y_;._; D(X; | p, pn) for p by replacing the parameter p by
an estimate p,, and setting its empirical mean equal to zero. We can let the
estimate p,, (1) of p(Fx) depend on u; when it does, we obtain the estimat-
ing equation 0 = Y i, D(X; | p1, pn (1£)). To simplify the asymptotics of an
estimator defined by a solution of an estimating equation, it is beneficial to
have that the nuisance parameter p be locally variation-independent of p.
We have that u and p are globally variation independent if each element of
in {u(Fx); Fx € MF} x R is equal to (u(Fx), po(Fx)) for some Fx € MF.
Similarly pu and p are locally variation independent if for each Fx € M F
there is a neighborhood N(Fx) C M¥ (in a natural topology) such that p
and p are variation independent in the local model N(Fx). When u and
p are not variation independent we will, when possible, reparametrize the
estimating function as D"(X | u, p1) = D(X | g, p(1t)), where p; and p are
now globally or locally variation independent. Although in many models it
may not be possible to define a reparamaterization that yields global vari-
ation independence, one can essentially always find a reparameterization
that leads to local variation independence. It is only local variation inde-
pendences that is required to simplify the asymptotics of our estimators.
For notational convenience, we denote the reparametrized estimating func-
tion with D(X | u, p) again. That is, throughout the book, unless stated
otherwise, one can take the parameters p and p to be locally variation
independent.

Let (L3(Fx),{f,9)rx = Erx f(X)g(X)) be the Hilbert space of mean
zero one-dimensional random variables with finite variance and covariance
inner product. Informally, the nuisance tangent space T, (Fx) at Fx is
the subspace of (LZ(Fx), {f,9)Fx = Erx f(X)g(X)) defined as the closed
linear span of all nuisance scores obtained by taking standard scores of
one-dimensional parametric submodels that do not fluctuate the parameter
of interest u (see, e.g., Bickel, Klaassen, Ritov and Wellner, 1993). More
formally, let {¢ — F¢ 4 : g} be a class of one-dimensional submodels indexed
by g with parameter € through Fx at € = 0, and let TF (Fx) C L3(Fx) be
the closure of the linear span of the corresponding scores s(g) at € = 0. The
nuisance tangent space is defined by {s(g) € TF(Fx) : £ u(Fe,g)l.—o = 0};
that is, these are the scores of the 1-d models that do not vary the parameter
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of interest 4 to first order. We illustrate these concepts in the two regression
model examples.

Example 1.3 (Repeated measures data with missing covariate;
continuation of example 1.1) In this example, the full data structure
model for X = (Z, E,V, E*) is characterized by the sole restriction (1.2).
The parameter of interest is u, and all other components of the distribution
Fx represent the nuisance parameter 7. The nonparametric maximum like-
lihood estimator of (a,7) suffers from the curse of dimensionality so that
an estimating function approach to construct estimators is useful again.
Lemma 2.1 in Chapter 2 proves that the orthogonal complement of the
nuisance tangent space at (a,7) is given by

Tivis(en) = {h(X*)e(e) € L3(Fx) : h(X*) 1 x p}.

We will now explain the sense in which the orthogonal complement of the
nuisance tangent space indeed generates all estimating functions of interest
based on the full data structure X. The representation of the orthogonal
complement (a, ) — T,f;t (o, n) of the nuisance tangent space as a function
of (@, 7) implies the following class of estimating equations for a: For any
given k X p matrix function h of X*, we could estimate o with the solution
ay, of the k-dimensional estimating equation

0= % 3 (X} )ei(e). (1.6)
i=1

We will refer to h as an index of the estimating function. In other words,
given a univariate class of estimating functions (Dy, : b € HF) with h

1 x p such that (Dx(- | u(Fx,p(Fx)) : h € HF) € TEL (Fx), we obtain
a class of k-dimensional estimating functions (D : h € HF¥) by defin-
ing for h € HF*, D, = (D4,,...,Dp,). Recall that an estimator a,, is
called asymptotically linear with influence curve I C(X) if ap, — a can be

approximated by an empirical mean of IC(X):

1 n
am—a=_ Z;IC’(X.-) +op(1/v/n).
Under .standa.rd regularity conditions (in particular, on h), the estimator
an, solving (1.6) is asymptotically linear with influence curve

ICL(X) = E{h(X* daiTg(x* |a)}_ h(X*)e(a), (1.7)

where -9+ g(X* | a) is a p x k matrix and we implicitly assumed that
the determinant of the k x k matrix E {R(X*)£g(X* | a)} is non zero.
Thus, the influence curve at F is a standardized version of the estimating
function itself. A well-known and important fundamental result (see e.g.,



