20 1. Introduction

Bickel, Klaassen, Ritov and Wellner, 1993) is that any regular asymptoti-
cally linear (RAL) estimator of u at the full data distribution Fy, ; has an
influence curve whose components are contained in the orthogonal comple-
ment T (a, ) of the nuisance tangent space. We recall that an estimator

nuis
n of p is regular at Flx if, for each 1-dimensional regular submodel F, with

parameter € and Fe—o = Fx, vn(ttn — p(F,,=1//7) converges under (i.e.,
when sampling from) F, to a common limit distribution Z (independent of
the choice of submodel). This proves that, given any regular asymptotically
linear estimator of o, we can find a candidate estimating equation of the
type (1.6) so that its solution is asymptotically equivalent with the estima-
tor under appropriate regularity conditions (typically the same as needed
for the given estimator). In this sense, the mapping from (a, %) to the or-
thogonal complement of the nuisance tangent space T,f:"t(a, 7) actually
identifies all estimating functions for « of interest, which is a fundamental
result used throughout this book.

By the multivariate central limit theorem, we have that /n(an — )
converges in distribution to a normal limit distribution with mean vector
zero and covariance matrix £ = E{ICy(X)ICr(X)"}. The efficient score
hopt (X*) €(a) for p is defined to be the vector of the projections of the
components of the score for u onto the orthogonal complement Tf;t of the
nuisance tangent space. The inverse of the covariance matrix of the efficient
score is referred to as the semiparametric variance bound (SVB) for the
model; the asymptotic covariance matrix of every regular estimator is at
least as large (in the positive definite-sense) as the SVB (Bickel, Klaassen,
Ritov and Wellner, 1993). The optimal estimating function is obtained by
choosing h = hgpt s0 that hop(X*)e(a) equals the actual efficient score.
Lemma 2.1 in Chapter 2 proves that this efficient score is defined by the

index
hopt (X*) = %g(x* | @)ixpBle(@)e(@) " | X*)pxps (1.8)

a result first proved by Chamberlain (1987). Note that this optimal index
hopt depends on the full data distribution Fx and is thus unknown. This
suggests estimating o with the solution a,, of the estimating equation
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indexed by h,, where h, is an estimator of hop:. Estimation of hops re-
quires an initial estimate of o and an estimate of the p x p covariance
matrix E(e(a)e(a)” | X*). One can obtain an initial consistent estimator
an o of a by solving the estimating function according to a simple choice
h independent of the true parameters (e.g., h(X*) = d/dag(X* | ap) at a
guessed ap). In order to construct a globally efficient estimator of «, one
needs a globally consistent estimate of hgp; that is, one needs a consistent
estimator of the conditional covariance matrix E(e(an,0)€(an0)” | X*) at
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”fhe(g?f)inial eztimat;ing ﬁ_lrnction is obtained by choosing h = h,,,, where
ng’; ) = l{iEg(X | c?z) } E(e(a)e(a)T | X*)=1. Given an estio;u;tor h
o I;,pt, nvolving an estimate of the covariance matrix E(e(a)e(a)T | X *75
ol e lt;error term computed under a guessed lower-dimensional model on

mates a by the solution of the corresponding estimating function o

0= % 3 ha(XD)ei(a).
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1.2.2 The curse of dimensionality in the full data model

In this subsection, we discuss the curse of

multivariate regression full data structure i dimensionality using our

1 as an illustration.
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