22 1. Introduction

Example 1.5 The curse of dimensionality; continuation of Exam-

ple 1.2 Suppose that X* has many continuous components and we assume

that E(e(u)e(n) " | X*) is unrestricted except for being a continuous func-

tion of the continuous components of X*. To simplify the notation, we
assume p is one-dimensional. It is possible to use multivariate smooth-

ing to construct a globally efficient RAL estimator p, giobess of 1 under
the standard asymptotic theory of Bickel, Klaassen, Ritov and Wellner
(1993) by using a smooth to obtain a globally consistent estimator of
E(e(p)e(u)™ | X*); that is, the estimator will have asymptotic variance
equal to the semiparametric variance bound I~! (1, 7) (i.e., the inverse of
the variance of the efficient score) at each law (u, ) allowed by the model.
However, in finite samples and regardless of the choice of smoothing pa-
rameter (e.g., bandwidth), the actual coverage rate of the Wald interval
Pn,globeff £ 2aj2l -1/2 (1, m) /+/n based on pp, giobes and the semiparamet-
ric variance bound 1! (u,n) will be considerably less than its nominal
(1 — ) level at laws (1, 17) at which E(e(u)e(u) T | X*) is a very wiggly func-
tion of X*. Here 2,/, is the upper a/2 quantile of a standard normal. This is
because (i) if a large bandwidth is used, the estimate of E(e(u)e(u)T | X*)
will be biased so that hep and its estimate will differ greatly but (ii)
if a small bandwidth is used, the second-order op(1/y/n) terms in the
asymptotic linearity expansion pin giovess —p = 2 >i_; IC(Y;)+op(1/4/n),
where IC(Y') denotes the influence curve of pin giobesf, Will be large, adding
variability. Thus, standard asymptotics is a poor guide to finite sample
performance in high-dimensional models when X* has many continuous
components. Robins and Ritov (1997) proposed an alternative curse of di-
mensionality appropriate (CODA) asymptotics that serves as a much better
guide.

Under CODA asymptotics, an estimator pn giobefs Of 8 one-dimensional
parameter u is defined to be globally CODA-efficient if pin giobess +
Za/21_1/2 (,U:, 7]) /\/’FL (01' equivalently Hn,globef f + za/2I—1/2 (M, 7’) /\/ﬁa
where T is a uniformly consistent estimator of I) is an asymptotic (1 — a)
confidence interval for p uniformly over all laws (u,7n) allowed by the
model. An estimator pinjocess is locally CODA-efficient at a working

submodel if (i) fin,tocesf + Zaj2l~1/2 (1, m) /4/n is an asymptotic (1 —a)

confidence interval for p uniformly over all laws (1, 7) in the submodel and
(i) ptn,loceff £ 2zaj20n is an asymptotic (1 — a) confidence interval for u
uniformly over all laws (p, ), where oy, is the nonparametric bootstrap es-
timator of the standard error of g jocefs (Or any other robust estimator of
its asymptotic standard error). Given (ii), condition (i) is implied by \/no,
converging to I~1/2 uniformly over (u,7n) in the working submodel. These
definitions extend to a vector parameter u by requiring that they hold for
each one-dimensional linear combination p of the components. Arguments
similar to those in Robins and Ritov (1997) show that in the model with
E(e(p)e(p) | X*) unrestricted, except by continuity and a bound on its
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matrix norm, no globally efficient CODA estimators exist (owing to un-
dercoverage under certain laws (#,m) depending on the sample size n), but
the locally .eﬁicient RAL estimator of the previous paragraph is lo;:a,lll1
CODA-efIicu_ent as well. Further, in moderate-sized samples, the nomina};
1 — o Wald interval confidence interval p,, joce ff x zos00 f(;r based
the loca.lly efficient estimator above and it,s %timate?i/ vaZianceuwill o
at near its nominal rate under all laws allowed by the model, with 1:1(1) Ve;
near 2z, /21 ~12 (4, 1) /v/ at laws in the working submodel ’i‘hus COlg)tA
asymptotlcs is much more reliable than standard asymptotic;s as gui
finite sample performance. nguideto
NOW fi, globess can be made globally CODA-efficient if we impose
s, . the
zgdltézgah assumption that E(e(u)e(u)T | X*) is locally smooth g.e., has
un erivatives to a sufficiently high order) in the continuous com
ponents of X *. However, when X* is high-dimensional, even when loca.i
smoothness is known to be correct, the asymptotics ba:sed on the larger
model that only assumes continuity of the conditional covariance proviges
a more relevant and appropriate guide to moderate sample performanc
For exa.mple', with moderate-sized samples, for any estimator "
gllere will exist laws (u,7) satisfying the local smoothness assumgt?grllo:g({l;
1 attilhe c.overage.of En,globeff £ 261217 1/2 (p, 1) /v/n will be considerably
.28 than 1ts nominal (1 — ). This is due to the curse of dimensionality:
in hlgh-c.hmensional models with moderate sample sizes, local smoothnogs-
a.ssumptmns, even when true, are not useful, since essentially no two units
)mll have.X *-vectors close enough to one another to allow the “borrowing of
information” necessary for smoothing. Thus, in high-dimensional modils
Wwe suggest using a CODA asymptotics that does not impose smoothn ,
even when smoothness is known to hold. O =

1.2.8 Coarsening at random

sTt‘lrlsc;illlitr;l;utlon of Vis .i1'1dexed'by the distribution Fx of the full data
e ei a;;i the conditional filstribution G(- | X) of the censoring vari-
a obsé fv ::ﬁ) .t]i?cause, for a given X, the outcome of C determines what
conerve & out X, we refer to .the conditional distribution G(- | X) as the
oo ngd coarsening mechanism. If the censoring variable C is allowed
b bf) on unobfen@d components of X, then p is typically not iden-

able from the distribution of ¥ without additional strong untestable

coarsening at random (CAR).

o 1{1}1{ tlF1‘is bO(I)lk we wil.l assume that the censoring mechanism @ satisfies
oir g ; ‘::‘11111; (y, }(EIA;{ is z;, restriction on the conditional distribution Gy x
, which implies that it is also a restricti i
the consoring. womch fmpli riction on G). If Y includes
. self as a component, then the conditi istri
. R itional -
bution Gy|x of Y, given X » can be replaced by G itself in the defrilzit(iiéslfl;f



