24 1. Introduction

CAR. If Y does not include the censoring variable C, then the definition
of CAR on Gy |x is weaker than the same definition applied to G.

Let X and C be the sample spaces of X and C, respectively. We first
formally define CAR in the case where X is a discrete random variable.
Let C (y) = {z* € X;®(z*,c*) = y for some ¢* € C} be the subset of the
support X of X whose elements z are consistent with the observation y. If
X is discrete, then CAR is the assumption

P(Y=y|X=2)=P) =y | X =1z') for any (z,2') € C(y). (1.9)

If, as in the previous examples, observing Y implies observing C so that C
is always observed, then CAR can also be written

P(C=c|X=2)=P(C=c|X =12')=h(y) for any (z,2') € C(y)
(1.10)
for some function i (-) of y = ®(c,z). If C is not always observed, this
last assumption is 1aore restrictive than CAR. Assumption (1.9) is also
equivalent to

PY=y|X=2)=P(Y=y|XeCy) forallzeC(y), (1.11)

or equivalently the density P(Y = y | X = z) is only a function of y. In
other words, there is no z € C(y) that makes the observation Y = y more
likely. Therefore, under CAR, observing Y = y is not more informative than
observing that X falls in the fized given set C(y). As a consequence, under
CAR, we have the following factorization of the density of the observed
data structure:

P(Y =y)

P(XeCy)PY =y| X =x)
= P(XeC(y)P(Y =y| X € C(y)). (1.12)

Coarsening at random was originally formulated for discrete data by
Heitjan and Rubin (1991).

A generalization to continuous data is provided in Jacobsen and Keiding
(1995), whose definition is further generalized in Gill, van der Laan, and
Robins (1997). A general definition of CAR in terms of the conditional
distribution of the observed data Y, given the full data structure X, is
given in Gill, van der Laan and Robins (1997): for each z, 2’

Pyix=2(dy) = Py|x=z(dy) on {y:z € C(y)} n{y:2' € C(y)}. (1.13)

Given this general definition of CAR, it is now also possible to define coars-
ening at random in terms of densities: for every = € C(y), we have that,
for a dominating measure v of G that satisfies (1.13) itself,
gyix(y|z) = %((yy_ll%—;%)) = h(y) for some measurable function k.
(1.14)
Thus the density gy|x (¥ | z) of Gy|x does not depend on the location of
z € C(y). Therefore, the heuristic interpretation of CAR is that, given the

1.2. Tour through the General Estimation Problem. 25

full data structure X = z, the censoring action determining the observed
data Y = y is only based on the observed part C(y) of . As mentioned
above, if observing Y implies observing C, then (1.14) translates into g(c |
z) = h(y) for some function h of y = ®(c, z).

In this book, we can actually replace (1.13) by the minimally weaker
condition that

gy|x(Y | X) = h(Y') with probability 1 (1.15)

for some h(-). Again, if observing Y implies observing C so that C is always
observed, then this last equation is equivalent to

g(C | X) = h(Y) with probability 1 (1.16)
for some function h(-).

Example 1.6 (Repeated measures data with missing covariate;
continuation of Example 1.1) In this example, C is the always ob-
served variable A. Thus, CAR is the assumption that pg (A|X) =h(Y) =
h(A,W, AE). Thus prg (A = 0|X) is a function only of W so that

pre (A =1|X) = prg (A = 1{W) = lIg(W) = (W) (1.17)
does not depend on E. O

Example 1.7 (Repeated measures data with right-censoring; con-
tinuation of Example 1.2) In this example, the conditional distribution
of the always observed variable C, given X, is a multinomial distribution
with the probability of C = j,  =0,...,p, being a function of X. It is easy
to show that CAR is the assumption that the probability that a subject
drops out at time j given the subject is yet to drop out (i.e., is at risk at
j) is only a function of the past up to and including point j,

Aol X) = P(C=j|X,C24)=P(C=j|C2jX()118)
= (i | X()),

where Ac(j | -) is the discrete conditional hazard of C at j given the
information -. O

Example 1.8 (Right-censored data) Let T be a univariate failure time
variable of interest, W be a 25-d covariate vector (e.g., 25 biomarkers/gene
expressions for survival), and C be a censoring variable. Suppose that
we have the full data X = (T,W) and the observed data Y = (T’ =
min(T,C),A = I(T =T),W). Let G(- | X) be the conditional distribution
of C, given X, and let g(- | X) be its density w.r.t. a dominating measure
that satisfies CAR as defined by (1.13) itself such as the Lebesgue measure
or counting measure on a given set of points. CAR is then equivalent to

gC|X)=g(C|W)onC<T. (1.19)

Except when the conditional law of C, given C > T, is a point mass, the
assumption g(C | X) = h(Y) is strictly stronger than CAR because the



