additional non identifiable restriction $g(c_1 \mid X) = g(c_2 \mid X)$ for $c_1 > c_2 > T$ will hold. If we redefine the variable C to be infinity when T < C, then C is always observed, the conditional law of C given C > T is a point mass at ∞ , and CAR becomes $g(C \mid X) = h(Y)$. Whether or not C has been redefined, CAR is equivalent to the assumption that the cause-specific conditional hazard of C given X only depends on W; that is,

$$\lambda_C(t \mid X) \equiv \lambda_C(t \mid W), \ 0 < t < \infty, \tag{1.20}$$

where $\lambda_C(t \mid \cdot) = \lim_{h\to 0} P(t+h < C \le t \mid X, C \ge t, T \ge t)/h$ for C a continuous random variable. \square

Coarsening at random implies factorization of the density of Y at y in F_X and G parts as in (1.12): for example, if $F_X(C(y)) > 0$, then $p_{F_X,G}(y) =$ $F_X(C(y))h(y)$, with $h(y) = g_{Y|X}(y \mid x)$. Under mild regularity conditions, Gill, van der Laan and Robins (1997) show that even when $F_X(C(y)) = 0$, the density $p_{F_X,G}(y)$ (w.r.t. a dominating measure satisfying CAR itself) factors as a product $p_{F_X}(y)h(y)$, where $h(y) = g_{Y|X}(y \mid X)$ and $p_{F_X}(y)$ only depends on the measure F_X . Thus, the maximum likelihood estimator (MLE) of F_X based on Y_1, \ldots, Y_n ignores the censoring mechanism G by simply interpreting $Y_i = y_i$ as $X_i \in C(y_i)$, i = 1, ..., n. The MLE of F_X can typically be computed with the EM-algorithm (e.g., Dempster, Laird and Rubin, 1977) either by assuming a nonparametric full data model and maximizing an unrestricted multinomial likelihood defined over given support points or assuming a parametric full data model and maximizing the parametric log-likelihood (Little and Rubin, 1987). The G part of the likelihood of Y = y is the conditional density of Y = y, given X, which by CAR indeed only depends on y.

Let $\mathcal{G}(CAR)$ be the set of all conditional distributions G satisfying CAR (i.e., satisfying (1.13) or (1.14) w.r.t. a particular dominating measure μ satisfying CAR itself). Consider the observed data model $\mathcal{M}(CAR) = \{P_{F_X,G} : F_X \in \mathcal{M}^F, G \in \mathcal{G}(CAR)\}$ defined by the assumptions $G \in \mathcal{G}(CAR)$ and $F_X \in \mathcal{M}^F$. Let $T(P_{F_X,G}) \subset L_0^2(P_{F_X,G})$ be the closure of the linear span of all scores of one-dimensional submodels $\epsilon \to P_{F_{\epsilon},G_{\epsilon}}$ with parameter ϵ through $P_{F_{\lambda},G}$ at $\epsilon = 0$. Here $L^2_0(P_{F_X,G})=\{h(Y):E_{P_{F_X,G}}h^2(Y)<\infty,E_{P_{F_X,G}}h(Y)=0\}$ is the Hilbert space endowed with inner product $\langle h, g \rangle_{P_{F_Y,G}} = E_{P_{F_Y,G}} h(Y)g(Y)$. The sub-Hilbert space $T(P_{F_X,G})$ is called the observed data tangent space. It is shown in Gill, van der Laan and Robins (1997) that if F_X is completely unspecified (i.e., the full data structure model \mathcal{M}^F is nonparametric), then the observed data model $\mathcal{M}(CAR)$ for the distribution of Y characterized by the sole restriction CAR (1.13) is locally saturated in the sense that $T(P_{F_X,G}) = L_0^2(P_{F_X,G})$. An important consequence of this result is that in this nonparametric CAR model all regular asymptotically linear estimators of the parameter μ are asymptotically equivalent and efficient. Because of its importance, we will give here the proof of this local saturation result.

Lemma 1.1 Consider the model

$$\mathcal{M}(CAR) = \{P_{F_X,G} : F_X \text{ unrestricted}, G \in \mathcal{G}(CAR)\}$$

for the observed data structure $Y = \Phi(C, X)$. The tangent space $T(P_{F_X,G})$ equals $L^2_0(P_{F_X,G})$.

Proof. By CAR, we have that the density p(y) of $P_{F_X,G}$ w.r.t. a dominating measure factorizes (Gill, van der Laan and Robins, 1997): $p(y) = p_{F_X}(y)h(y)$ with $h(y) = g_{Y|X}(y \mid X)$. As one-dimensional submodels through F_X (at parameter value $\epsilon = 0$), we take $dF_{X,\epsilon}(x) = (1 + \epsilon s(x))dF_X(x)$, $s \in L_0^2(F_X)$. As one-dimensional submodels through G, we take $dG_{\epsilon}(y \mid x) = (1 + \epsilon v(y))dG(y \mid x)$, $v \in \{V(Y) \in L_0^2(P_{F_X,G}) : E(V(Y) \mid X) = 0\}$. A general result is that the score of the one-dimensional model $P_{F_{X,\epsilon},G}$ equals $E_{F_X}(s(X) \mid Y)$ (Gill, 1989). As a consequence, the collection of all scores of the corresponding one-dimensional submodels $P_{F_{X,\epsilon},G_{\epsilon}}$ through $P_{F_X,G}$ (obtained by varying s,v over all possible functions) is given by

$$S(P_{F_X,G}) \equiv \{ E_{F_X}(s(X) \mid Y) : s \in L_0^2(F_X) \} \oplus \{ V(Y) : E_G(V(Y) \mid X) = 0 \}.$$
(1.21)

Let the nonparametric score operator $A_{F_X}: L_0^2(F_X) \to L_0^2(P_{F_X,G})$ be defined by $A_{F_X}(s)(Y) = E(s(X) \mid Y)$. The adjoint of A_{F_X} is given by $A_G^\top: L_0^2(P_{F_X,G}) \to L_0^2(F_X), A_G^\top(V)(X) = E(V(Y) \mid X)$. This proves that the closure $T(P_{F_X,G})$ of $S(P_{F_X,G})$ equals the closure of the range of A_{F_X} plus the null space of its adjoint: $T(P_{F_X,G}) = \overline{R(A_{F_X})} \oplus N(A_G^\top)$. A general Hilbert space result is that for any Hilbert space operator $A: H_1 \to H_2$ with adjoint $A^\top: H_2 \to H_1$, $\overline{R(A)} + N(A^\top) = H_2$. This proves the lemma.

Gill, van der Laan and Robins (1997) also prove that if the distribution of $Y = \Phi(C, X)$ has a finite support set, then the hypothesis that G satisfies CAR cannot be rejected; that is, the model $\mathcal{M}(CAR) = \{P_{F_X,G} : F_X \text{ unrestricted}, G \in \mathcal{G}(CAR)\}$ is a nonparametric model for the law of Y. It follows that the observing data $(Y_1, ..., Y_n)$ can never lead one to reject the hypothesis that the law of Y lies in the model $\mathcal{M}(CAR)$, regardless of the support of Y.

In many of the specific data structures covered in this book, it will be possible to provide an easy-to-interpret definition of CAR. If the censoring is multivariate in nature, CAR is typically a very complicated and hard-to-understand assumption, but we will always be able to define large easy-to-interpret submodels of CAR.

1.2.4 The curse of dimensionality revisited

When X is high-dimensional, the existence of locally CODA-efficient estimators with good moderate sample performance in the full data model \mathcal{M}^F