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additional non identifiable restriction g(c; | X) = g(c2 | X) forc; > 2 > T
will hold. If we redefine the variable C to be infinity when T < C, then
C is always observed, the conditional law of C given C > T is a point
mass at 0o, and CAR becomes g(C | X) = h(Y). Whether or not C has
been redefined, CAR is equivalent to the assumption that the cause-specific
conditional hazard of C given X only depends on W; that is,

Aot | X) = At | W), 0<t < oo, (1.20)

where Ao(t | ©) = limpo P(t+h < C <t | X,C >2t,T > t)/hfor C a
continuous random variable. O

Coarsening at random implies factorization of the density of Y at y in Fix
and G parts as in (1.12): for example, if Fx(C(y)) > 0, then pr, c(y) =
Fx(C(y))h(y), with h(y) = gy|x(y | ). Under mild regularity conditions,
Gill, van der Laan and Robins (1997) show that even when Fx(C(y)) = 0,
the density pry,c(y) (W.r.t. a dominating measure satisfying CAR itself)
factors as a product pr, (y)h(y), where h(y) = gyx(y | X) and prx (y)
only depends on the measure Fx. Thus, the maximum likelihood estimator
(MLE) of Fx based on Yj,...,Y; ignores the censoring mechanism G by
simply interpreting Y; = y; as X; € C(y:), ¢+ = 1,...,n. The MLE of
Fx can typically be computed with the EM-algorithm (e.g., Dempster,
Laird and Rubin, 1977) either by assuming a nonparametric full data model
and maximizing an unrestricted multinomial likelihood defined over given
support points or assuming a parametric full data model and maximizing
the parametric log-likelihood (Little and Rubin, 1987). The G part of the
likelihood of Y = y is the conditional density of Y = y, given X, which by
CAR indeed only depends on y.

Let G(CAR) be the set of all conditional distributions G satisfy-
ing CAR (i.e., satisfying (1.13) or (1.14) w.r.t. a particular dominating
measure 4 satisfying CAR itself). Consider the observed data model
M(CAR) = {Ppyc : Fx € MF,G € G(CAR)} defined by the as-
sumptions G € G(CAR) and Fx € MF. Let T(Pry,c) C L§(Prx.c)
be the closure of the linear span of all scores of one-dimensional sub-
models € — Pp, g, with parameter ¢ through Pr, ¢ at € = 0. Here
Lg(PFx,G) = {h(Y) : Epr,Ghz(Y) < 00>EPFX,Gh(Y) = 0} is the Hilbert
space endowed with inner product (h,g)pe, ¢ = EPr,,ch(Y)g(Y). The
sub-Hilbert space T(Pry, ) is called the observed data tangent space. It
is shown in Gill, van der Laan and Robins (1997) that if Fx is completely
unspecified (i.e., the full data structure model MF is nonparametric), then
the observed data model M(CAR) for the distribution of Y characterized
by the sole restriction CAR (1.13) is locally saturated in the sense that
T(Pry,c) = LE(Prx,c)- An important consequence of this result is that in
this nonparametric CAR model all regular asymptotically linear estima-
tors of the parameter u are asymptotically equivalent and efficient. Because
of its importance, we will give here the proof of this local saturation result.
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Lemma 1.1 Consider the model
M(CAR) = {Pry c : Fx unrestricted, G € G(CAR)}

for the observed data structure Y = ®(C, X). The tangent space T(Pr, )
equals LE(Pry, g)- ’

Proof. By CAR, we have that the density p(y) of Pr, ¢ wr.t. a
dominating measure factorizes (Gill, van der Laan and Robins, 1997):
p(y) = prc(y)h(y) with h(y) = gv|x(y | X). As one-dimensional sub-
models through Fx (at parameter value ¢ = 0), we take dFy(z) =
(1 + es(z))dFx(x), s € L§(Fx). As one-dimensional submodels through
G, we take dG(y | z) = (1 + ev(y))dG(y | z) , v € {V(Y) € LE(Pry.c) :
E(V(Y) | X) = 0}. A general result is that the score of the one-dimensional
model Pry g equals Ep,(s(X) | Y) (Gill, 1989). As a consequence,
the collection of all scores of the corresponding one-dimensional submod-
els Pp, G, through Pp, g (obtained by varying s,v over all possible
functions) is given by

S(Prx,¢) = {Erx(s(X) | Y) : s € L§(Fx)}&{V(Y) : Eg(V(Y) | X) =0}.
(1.21)
Let the nonparametric score operator Ap, : L3(Fx) — L%(Pry,g) be
defined by Ap,(s)(Y) = E(s(X) | Y). The adjoint of Ap, is given by
Al : LE(Pry,¢) — L&(Fx), AL(V)(X) = E(V(Y) | X). This proves that
the closure T'(Pry,g) of S(Pry,c) equals the closure of the range of Ap,
plus the null space of its adjoint: T(Pry ¢) = R(Ar, ) ® N(A). A general
Hilbert space result is that for any Hilbert space operator A : H; — H,
Z_]vith adjoint A7 : Hy — Hy, R(A) + N(AT) = H,. This proves the lemma.
Gill, van der Laan and Robins (1997) also prove that if the distribution
of Y = ®(C, X) has a finite support set, then the hypothesis that G sat-
isfies CAR cannot be rejected; that is, the model M(CAR) = {Pp, ¢ :
Fx unrestricted, G € G(CAR)} is a nonparametric model for the law of Y.
It follows that the observing data (Y3, ...,Y;) can never lead one to reject
the hypothesis that the law of Y lies in the model M(C AR), regardless of
the support of Y.
In many of the specific data structures covered in this book, it will be
possible to provide an easy-to-interpret definition of CAR. If the censoring
is multivariate in nature, CAR is typically a very complicated and hard-

to-understand assumption, but we will always be able to define large easy-
to-interpret submodels of CAR.

1.2.4 The curse of dimensionality revisited

When X .is high-dimensional, the existence of locally CODA-efficient esti-
mators with good moderate sample performance in the full data model MF



