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(based on observing Xj, ..., Xy,) does not imply their existence in the ob-
served data model M(CAR) = {Pry.c : Fx € MF,G € G(CAR)} (based
on observing Y3, . . ., Yy,), thereby creating the need for further modeling as-
sumptions on G or Fx; that is, when X is high-dimensional and the sample
size is moderate, there may be no estimator of p that has, under all laws al-
lowed by model M(CAR), an approximately normal sampling distribution
centered near p with variance small enough to be of substantive interest.
Further, if we adopt a CODA asymptotics that imposes no smoothness,
then there will generally exist (i) no uniformly consistent estimator of p
, (ii) no estimator of y that attains a pointwise (i.e., non-uniform) rate
of convergence of n® under all laws allowed by the model for any a > 0;
and (iii) no “valid” 1 — o interval estimator for 4 exists. By valid we mean
that, under all laws, the coverage is at least (1 — ) at each sample size
n and the length goes to zero in probability with increasing sample size.
This reflects the fact that, in order to construct a uniformly consistent
estimator of u under model M(CAR), it is necessary to use multivariate
nonparametric smoothing techniques to estimate conditional means or den-
sities given a high-dimensional covariate, which would require impractically
large samples when X is high-dimensional.

Practical estimators (say, ptn = ®(Pn) for some ¢) are typically rea-
sonably smooth functionals of the empirical distribution P, so that its
first-order linear approximation (i.e., the functional derivative d®(F, — P)
applied to (P, — P), which is the empirical mean in (1.22) of its influence
function; see Gill, 1989) is representative of its finite sample behavior. In-
formally, one might coin in the phrase “an estimator suffers from the curse
of dimensionality” if it is a highly non smooth functional of the empirical
distribution P, so that the second-order terms in (1.22) heavily influence
its finite sample behavior. Variance of an estimator and smoothness of the
estimator as a functional of the empirical distribution P, (measured by
the size of its second order terms) are typically tradeoffs, so that it is no
surprise that in many models the unregularized nonparametric maximum
likelihood estimator suffers from the curse of dimensionality (i.e., large sec-
ond order terms) while many practical good estimators are available (as in
our full data repeated measures examples above). The following examples
illustrate this type of failure of maximum likelihood estimation nicely.

Example 1.9 (Right censored data; continuation of Example 1.8)
Let u = Fr(t) = P(T < t) be the parameter of interest. If censoring is ab-
sent, then we would estimate y with the empirical cumulative distribution
function of T4, . . ., T. If censoring is independent (i.e., g(c | W) = g(ce),
then we could estimate p with the Kaplan-Meier estimator (Kaplan and
Meier, 1958; Wellner, 1982; Gill, 1983), which is inefficient since it ignores
the covariates W. In general, the Kaplan-Meier estimator is an inconsistent
estimator under the sole assumption (1.19). The Fx part of the likelihood
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of Y under CAR is given by
L(Y | Fx) = dFpw(T | W)2(1 = Fryw (T | W))'~2dFw (W).

Let L(Y1,...,Yn | Fx) = [I;-; L(Y: | Fx) be the likelihood of an i.i.d.
sample Y1, . .., Y,. The maximum likelihood estimator of Fr|w=w;, is given
by the Kaplan—Meier estimator based on the subsample {Y; : W; = W;},
i=1,...,n. The maximum likelihood estimator of Fy is the empirical dis-
tribution function that puts mass 1/n on each observation W;,i=1,...,n.
If W is continuous, then each subsample only consists of one observation
so that, if A; = 1, then the Kaplan-Meier estimator of Frjw=w, puts mass
1 on T;, and if A; = 0, then it puts mass zero on [0, ’f",] and is undefined
on (T}, 00). It follows that the MLE results in an inconsistent estimator of
Fr(t). Thus, if W is continuous, then the curse of dimensionality causes
the MLE to be inconsistent.

Suppose that each of the 25 components of W is discrete with 20 pos-
sible outcomes. Then, the outcome space of W has 20%° values w;. In
that case, the maximum likelihood estimator of Fryw (- | w;) is asymp-
totically consistent and normally distributed so that the NPMLE of Fr(t)
is also asymptotically consistent and normally distributed. However, one
needs on the order of 20%° observations to have Kaplan—Meier estimator
of Frjw(- | W = w;) be well defined with high probability. Therefore, one
needs a sample size on the order of 20%% observations in order for the MLE
of Fr(t) to have a reasonable practical performance. In this case, we con-
clude that the curse of dimensionality does not cause inconsistency of the
MLE but causes a miserable finite sample performance for any practical
sample size. O

Example 1.10 (Repeated measures data with missing covariate;
continuation of Example 1.1) Under CAR, the Fx part of the likelihood
of the observed data Yi,...,Y, is given by

n
L(Y1,..., Y | Fx) =[] dFx(X:)2dFw (W) =2

i=1
This Fx-part of the likelihood of the observed data Y3,...,Y, can be
parametrized by o and a nuisance parameter 7 that includes the unspeci-
fied conditional error distribution of ¢, given X*, the unspecified conditional
distribution of extraneous surrogates E* given Z, X*, and the unspecified
marginal distribution of X*. A maximum likelihood estimator of « is de-
fined as the maximizer of the profile likelihood for « (i.e., the likelihood
with the nuisance parameter replaced by 7j(c), where 7j(«) is the maximum
likelihood estimator w.r.t. n for given a). Thus 7(a) involves maximizing
a likelihood w.r.t. the high dimensional nuisance parameter 7. As a conse-
quence, the maximum likelihood estimator 7{a), or any approximation or
rggula.rization of this maximum likelihood estimator, such as a penalized or
sieve maximum likelihood estimator, is either extremely variable in moder-



