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ate sized samples if not oversmoothed, but may be biased if oversmoothed.
Thus 7j(c) is only acceptable for large sample sizes. Obviously, this implies
that the maximum likelihood estimator of a or any approximation thereof
also suffers heavily from this curse of dimensionality. O

Example 1.11 (Repeated measures data with right-censoring;
continuation of Example 1.2) Under CAR, the Fix part of the likelihood
of the observed data Yi,...,Y, is given by

L(Y3,...,Ya | Fx) = [ dFx(Xi(0)].q,

i=1

where dFx (X (c)) represents the density of the sample path X(c) under Fx
w.r.t. some dominating measure (discrete or continuous). Again, we note
that the full data model only specifies a mean of one of the components of
Fx so that maximum likelihood estimation will perform miserably at finite
sample sizes and may even be inconsistent. O

The fact that the maximum likelihood estimator, or more generally any
globally efficient estimator, has a bad practical performance does not ex-
clude the presence of other inefficient but practical estimators. In fact,
in the full data multivariate generalized regression models (repeated mea-
sures) of Examples 1.1 and 1.2, we have already seen that no globally
efficient practical estimators of u exist, but nice locally efficient estima-
tors are available. However, Lemma 1.1 teaches us that if Fx is completely
unspecified, then all regular asymptotically linear estimators of the param-
eter i in the observed data model M{C AR) are asymptotically equivalent
and efficient. Thus, in this nonparametric coarsening at random model for
Y, one has no other choice than to construct globally efficient estimators,
such as the nonparametric maximum likelihood estimator. From a practical
point of view, the lesson is that if the maximum likelihood estimator of Fx
in the observed data model M(C AR) based on Yj,...,Y, has a bad prac-
tical performance, then there will not exist regular asymptotically linear
estimators with good practical performance in M(CAR).

To further understand the difficulty in estimating x in model M(CAR),
recall that the observed data nuisance tangent space Thqis(Pry ) for the
parameter of interest u is the closure of the linear span of all scores of
one-dimensional submodels € — P, g, for which d/deu(Pr, g, )., = 0.
The observed nuisance tangent space is a sub-Hilbert space of L3(Pry,c) =
{h(Y) : Epy, ch*(Y) < 00, Ep,, oh(Y) = 0} endowed with inner product
(hy9) Pey.c = EPpy o [h(Y)g(YS{]. We also recall that an estimator u, is
called asymptotically linear at Pr, ¢ with influence curve IC(Y) if
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and that the components of the influence function I C(Y) of any regu-
lar asymptotically linear estimators of 4 must lie in the orthocomplement
T;,‘;M(pr,g) of the observed data nuisance tangent space Truis(Pry,c)-
Our next goal is to try to understand why in the models of the previous
examples it is not possible to obtain an estimator i satisfying the expan-
sion above for any element IC(Y) in the orthogonal complement Tt ;. in
the absence of smoothness assumptions. To do 80, we must first determine
the form of T, ..

Consider a full data structure model MF and associated observed
data model M (CAR) in which G is assumed to satisfy CAR but is
otherwise unrestricted (i.e., G € G(CAR)). Our general representa-
tion theorem (Theorem 1.3) at the end of this chapter, first established
in Robins and Rotnitzky (1992), represents the orthogonal complement
Truis = Tibis (Pry,G) of the nuisance tangent space Thyi, in the ob-
served data model M(CAR) at Pr, ¢ as the range of a mapping D —
ICo(D) — I(ICo(D) | Tcar), where the initial mapping D — ICy(D)
satisfies E(ICo(D)(Y) | X) = D(X) Fx-a.e., applied to the orthogonal
complement T,ﬂf; (Fx) of the nuisance tangent space in the full data model
MF. The mapping is defined as an initial mapping (typically an inverse
probability of censoring weighted mapping) minus a projection of this ini-
tial mapping on the tangent space Tcar = Toa Rr(Pry,c) for G in model
M(CAR) at Ppy . Tocar (Pry,c) consists of all functions of the observed
data that have mean zero given the full data, namely

Toar(Prx,c) ={V(Y) € L§(Pry,c) : Ec(V(Y) | X) =0}  (1.23)

To understand why this space should be Tc AR, note that any paramet-
ric submodel f(Y|X;w) = m(Y;w) of G(CAR) with true value w = 0
must have a score dlogm (Y;w) /0w at w = 0 that is a function only
of Y and has conditional mean zero, given X. By choosing f (Y| X;w) =
(1+wV(Y))g(Y | X) for bounded V(Y) satisfying Ec(VY) | X) =0
and then taking the closure in L(Pr, ), we obtain the set Toap (Pry.c)-
Note that Tcar(Pry,c) depends on Fx as well as on G because whether
;(Y) has a finite variance (and thus belongs to LZ(Pry ¢)) depends on

X.

Below, using this general representation of Tt (Pry.c), we will de-
termine the orthogonal complement of the nuisance tangent space (or
equivalently all influence curves/functions of regular asymptotically lin-
ear estimators) in model M(CAR) for our examples. Subsequently, we
will note that any function of Y and the empirical distribution P, (say
ICpc(Y | P,)) for which I Crc(Y | P) would equal an influence function
IC(Y | P) at P for each P ¢ M(CAR) is a highly non smooth function
O.f the empirical distribution P,, because I C(Y | P) depends on condi-
tional expectations given high dimensional continuous covariates. Such a
function ICpc(Y | P,) is said to be Fisher consistent for IC(Y | P).
Clearly ICpc (- | Py,) will fail to be consistent in L, (Pry,@) for the function



