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Monotone Censored Data

3.1 Data Structure and Model

Let {X(t) : t € R>o} be a multivariate stochastic process indexed by

time t. Let T' denote an endpoint of this stochastic process, and define
X(t) = X(min(¢,T)). Let R(t) = I(T < t) be one of the components of
X (t). We define the full data as X = X(T) = (X(s) : s < T), where T'is |

thus a function X.

Suppose that we observe the full data process X(-) up to the minimum
of a univariate censoring variable C and T so that for the observed data |

we have:

Y = (f = min(T, C), A = (T < T) = I(C > T), X(T)).

We will define C = oo if C > T so that this data structure can be

represented as

Y = (C, X(C)).

In the next section, we provide several important examples of this monotone

censored data structure.

Let MF be a specified full data model for the distribution Fx of X, and ;
let p = p(Fx) € R be the full data parameter of interest. Let G(- | X) ;
be the conditional distribution of C, given X, and it is assumed that G |
satisfies CAR (i.e., G € G(CAR)). Given working models M™* C MF 3

and G C G(CAR), we define the observed data model M = {Pry.c :
Fx € MF»}U{Pp, g : G € G}. We also define the observed data model
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M(G) = {Pryc : Fx € M¥,G € G}. Candidates for the censoring model
G are given below.

Let g(c | X) be the conditional density of C, given X, either w.r.t. a
Lebesgue density or counting measure, and let Ac(c | X) be the corre-
sponding conditional hazard. Define A(t) = I(C < t). The conditional
distribution G satisfies CAR if

E(dA() | X, A(t-)) = E(dA(t) | A(t-), X (min(t, ©))).
In other words, the intensity of A(t) w.r.t. the unobserved history

X, fi(t-—_)) should equal the intensity of A(f) w.r.t the observed history
(A(t-), X (min(t, C))). Equivalently, G satisfies CAR if for c <T

Ac(c| X) = m(c, X(c)) for some measurable function m. (3.1)

If C is continuous, then a practical and useful submodel G C G(CAR) (3.1)
is the multiplicative intensity model w.r.t. the Lebesgue measure

E(dA(t) | A(t-), X (min(t, C))) = I(F > t)ho(t) exp (2] W (1)),

where ay is a k-dimensional vector of coefficients, W (t) is a k-dimensional
time-dependent vector that is a function of X (t), and A is an unspecified
baseline hazard. Note that

Ac(t| X, T >t) = Xo(t) exp (af W(2))

denotes the Cox proportional hazards model for the conditional hazard Ac.
If we knew that the censoring was independent of the survival time and
the history, then, for ¢ < T, this would reduce to

Ac(t | X) = do(t).
If C is discrete, then a natural model G C G(CAR) is
1
1+ exp(—{ho(c) + g W()})’

where hg could be left unspecified. This corresponds with assuming a lo-
gistic regression model for the conditional censoring hazard Ac(t | X) =
P(C=t|X,C>t):fort<T

Ac(t| X) T
log (Tm) = ho(t) + g W(2).
If the support of C gets finer and finer so that P(C =t | X,C > t) ap-
proximates zero, then this model with hy unspecified converges to the Cox
proportional hazards model with Ap = exp(hg) and regression coefficients
ap (see e.g., Kalbfleish and Prentice, 1980).

Whatever CAR model for Ac(t | X) is used, the G part of the den-
sity of Pry,¢ in terms of A¢(t | X) is given by the partial likelihood of
A(t) = I(C < t) w.r.t. history F(t) = (A(t—), X (min(t,C))) as defined
in Andersen, Borgan, Gill and Keiding (1993) for the continuous case. Let

E(dA(t) | At-), X(min(z,C))) = I(T > 1)



