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a(t) = E(dA(t) | F(t)) = I(C > t,T > t)dAc(t | X) be the intensity of |
A(t) w.r.t. history F(t), where this can also denote a discrete probability |
in case C is discrete. Here Ac(- | X) is the cumulative of Ac(- | X). The G !

part of the density of Pry ¢ is given by

L(G) = ][a(t)df‘(t)(l — aft))t—d4®
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For the Cox proportional hazards model and logistic regression model for }
Ac(t | X), maximum likelihood estimation of G can be based on this likeli- '
hood and can be carried out with standard software. In particular, one can
fit the Cox proportional hazards model with the S-plus function Coxph(). 8 %
If we assume the logistic regression model for discrete C, then inspection of i §
the likelihood L(G) shows that one can obtain MLE by simply fitting the 3§
logistic regression model to a pooled sample. Here, a subject with observed §
censoring time C = j (for simplicity, let the support of C be integer-valued) t B

contributes j Bernoulli observations (0,...,0,1) with corresponding co-

variates (1, W(1)),...,(j, W(j)), and a subject who fails between C = j 1
and C = j + 1 contributes j observations (0, ...,0) with corresponding - }

covariates (1, W(1)),..., (4, W(5)).
In Section 3.2 we will provide many challenging estimation problems that

are applications of the general monotone censored data structure covered
in this chapter. In Section 3.3 we define inverse probability of censoring ]
weighted mappings ICy(Y | G, D) from full data estimating functions into

observed data estimating functions and derive a closed-form representa-
tion of the influence curve of the corresponding estimators. We work out

these estimators for the case where the full data model is a multiplica-

tive intensity model for the intensity of a counting process N(t) C X(¢)
w.r.t. a particular subset of X (t—). For example, one might be interested
in estimating the causal effect of a randomized treatment arm on the in-

tensity of survival or another counting process of interest. This implies §
that one does not want to adjust for other variables in the past except
the past of the counting process and the treatment variable. Just fitting ;‘
a Cox proportional hazards model only using the treatment as covariate §
is inconsistent if the hazard of censoring at time ¢ conditional on X de- 1
pends on more of X(t—) than the treatment variable. In addition, this
method is highly inefficient if the data contain surrogates for survival or
strong predictors of survival. In Section 3.4, we define the optimal mapping
IC(Y | Q,G,D)=1Co(Y | G,D) —I(ICy | Tcar) from full data estimat- :

ing functions into observed data estimating functions indexed by nuisance
parameters Q = Q(Fx, G) and G. In Section 3.5, we discuss estimation of @

in detail. In Section 3.6, we study estimation of the optimal index h,,; and 1
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work out closed-form representations for the case where the full data model
is the multivariate generalized linear regression model. In Section 3.7, we
apply the methods to obtain a locally efficient estimator of the regression
parameters in a multivariate generalized regression model (with outcome
being a multivariate survival time) for the multivariate right-censored data
structure when all failure times are subject to a common censoring time.
In Section 3.8, we rigorously analyze a locally efficient estimator of the bi-
variate survival function based on a bivariate right-censored data structure
by applying Theorem 2.4 of Chapter 2. Finally, in Section 3.9 we provide a
general methodology for estimating optimal predictors of survival w.r.t. risk
of a user supplied loss function based on our general right-censored data
structure, thereby making significant improvements to the current litera-
ture on survival prediction. In the next subsection, we show that, without
loss of optimality, the estimation methods can also be applied if censoring
is cause-specific and the cause is observed.

3.1.1 Cause-specific censoring

In many applications, there exist various causes of censoring and the cause
is typically known. In this situation, one observes (C, J), where C is the
censoring time and J indexes the cause. For example, one cause might be
the end of the study while another cause might be that the subject has
severe side effects that made the doctor decide to stop treatment. In this
case, one wants a model for the intensity «(¢) that acknowledges that C
is an outcome of competing censoring times that might follow Cox propor-
tional hazards models using different subsets of covariates. In this case, we
extend our data structure as

Y =(C,J, X(C)),

where (C, J) now represents the joint censoring variable with conditional
distribution G, given X. We can now identify the joint censoring variable
by the random process A(t) = (A1(t),..., As(t)), where A;(t) = I(C <
t,J =j),j =1,...,J. Thus, the G part of the density of Pr, ¢ is now
given by g(A | X), which can in the discrete case be represented as

gA| X) = HHaj(t)dAj(t)(l - aj(t))l—dAj(t),

where a;(t) = E(dA;(t) | Ai(t),...,A;—1(t), F(t)), = 1,...,J. In the
continuous case, this expression for g(A | X) reduces to the partial likeli-
hood of the multivariate counting process A(t) = (A (t),..., As(t)) w.r.t.
F(t) as defined in Andersen, Borgan, Gill, and Keiding (1993)

9(A ] X) = T[] as®)* 4D — a;(t)dt)—44:®).
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