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Let A.(t) = Z;=1 A;(t). Since the outcome .of J do%' not affect the ‘
censoring of X and only affects the G part of the likelihood, it is not hard t.o !
show that the orthogonal complement of the nuisance tangent space for 4 is |
identical to the orthogonal complement of the nuisance tangent space class
of all estimating functions for u for the reduced data str}lcture (C’, X)),
as presented in this chapter. The corresponding estimating fungtlons only -
require an estimate of the intensity a(t) = E(dA.(t) | F(t)) (i.e., of ‘the
conditional distribution of C, given X) and, in particular, the survivor
function

Git|X)=P(C2t|X)=exp (—/[ )a(s)ds) of C, given X.
0,¢

This censoring mechanism could be fit with the reduced datz'm st.ructur.e
(C, X(C)). However, if knowledge is available on the cause sp.ec1ﬁc .mten31-
ties of A;, then a natural framework for fitting a continuous intensity o of ’
A w.r.t. F(t) is to assume multiplicative intensity models

a;(t) = E(dA;(t) | F(t)) = I(T > t)Xo;(t) exp(a;W;(t))

and use a(t) = E;=1 a;(t). Again, one can use the S-plus fl.mction Co'xph() |
to fit the intensities aj, j = 1,..., J (Andersen, Borgan, Gill, aI.ld Keiding,

1993). Similarly, such a strategy could be_ applied if the ceniormg mecha- |
nism is discrete. In this case we note that G(t | X) = []jo s [T;=1 (1= (),

where \;(t) = E(dA4;(t) | A1(t) = ... = 4;1(t) = 0,C 2 t,}'(t)).'Thu§,
following Robins (1993a), we conclude that the methods pr%.ented in thl.s
chapter for single cause censoring can be applied by only using tl.le ad.dl- j
tional data J to obtain an estimate G, of G(t | X) but further ignoring j

J.

3.2 Examples

3.2.1 Right-censored data on a survival time

Consider a longitudinal study in which the outcome of interest is the |
survival time T. We assume that each subject is regularly foll(?vx'red up
and relevant time-dependent measurements are te_mken at 'ea,ch visit. Let
R(t) = I(T > t) be the survival status of the subject at time ¢. Let I.,(t) !
be the time-dependent process representing these measurements at ?1me
t. We denote the history of L(t) with L(t) = {L(s) : s < t}. The time-
independent baseline covariates are included in the vector L(0). For ﬁ;lll :.
data on a subject we have X = (T, L(T)) = (R(T),L(T)). Let C' b.e the
dropout time of the subject. We observe each subject up to the minimum
of T and C. Thus we observe n i.i.d. observations Yi, ..., Yy of

Y = &(T, L(T),C) = (T =T AC,A = (T < C), L(T)).
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One can also represent this data structure as
Y = (T,A,X(T))

since X(t) = (R(t), L(t)). Thus, this data structure is of the type con-
sidered in this chapter. Important parameters might be 1) the marginal
survival function of T, 2) regression parameters in a generalized linear re-
gression model of log(T'), onto some baseline covariates and /or treatment or
regression parameters and 3) regression parameters of a Cox proportional
hazards model for the hazard of T, adjusting for some baseline covariates,
treatment, and possibly some of the time-dependent covariates.

Estimation with this data structure is a complicated and practically
important problem. This data structure is an important extension of the
marginal right censored data structure on 7. For an extensive description
of the literature on the marginal univariate right-censored data structure,
we refer the reader to Andersen, Borgan, Gill and Keiding (1993). For
maximum likelihood (or more general partial likelihood) estimation and
inference with multiplicative intensity models such as the Cox proportional
hazards model for this data structure, see Andersen, Borgan, Gill and Kei-
ding (1993). Such models are of low enough dimension that the maximum
likelihood estimator can be used. However, if one is interested in more
marginal parameters, such as the marginal distribution of T or a regression
model of T on a subset of the baseline and/or time-dependent covariates,
then this literature does not provide an appropriate methodology.

Locally efficient estimation of regression parameters in Cox proportional
hazards and accelerated failure time models for this data structure, allow-
ing covariates outside the model, has been studied in Robins (1993a) and
Robins and Rotnitzky (1992). The importance of assuming a CAR model
in these real-life applications has been argued in detail in these papers. Lo-
cally efficient estimation of the marginal distribution of T' has been studied
and implemented with simulations in Hubbard, van der Laan and Robins
(1999). Robins (1996) studies locally efficient estimation in the median re-
gression model. Robins and Finkelstein (2000) apply the inverse probability
of censoring weighted estimator of survival to analyze an AIDS clinical trial.

3.2.2  Right-censored data on quality-adjusted survival time

Consider a longitudinal study in which a quality adjusted survival time
of a subject is the time variable of interest. Let T' be the chronological
survival time of the subject. Let V/(t) be the state of health of the sub-
Ject at time ¢. Typically, one assumes that the state space is finite so that
V(t) € {1,...,k} for some k, but this is not necessary. We define the
quality adjusted lifetime as U = fOT Q(V(t))dt, where Q is some given
function. One sensible definition of quality-adjusted lifetime can be ob-
tained by defining V'(¢) as the quality of life at time ¢ on a scale between 0
and 1 and Q(t) = ¢. In this case, one might define V(t) = 1 if the subject



