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Let V be the time at which T is reported, so in the context above we have
V = Ag. Note that at time V the computer contains the full data structure
X = X(V), which corresponds with observing T, V1(T), and W(T). We
assume that the reporting delay is finite; that is, if a subject dies, then it
will eventually always be reported, which is a reasonable assumption for
these central registries, although the reporting delay can be large. Let C
represent the time at which the data analyst stops receiving information
on the subject. For example, C might be the time at data analysis, but it
could also be the time at which the subject switches treatment or leaves
the study so that his/her true survival time can no longer be recovered.
Living in the time scale of the data analyst, one observes the process X up
to the minimum of C' and V, and one knows whether this minimum is the
censoring time or is the time V at which T is reported. If C' > V, then the

full data X (V) are observed, and if C' < V, then the right censored data

X (C) is observed. Thus, the observed data structure can be represented as
Y =(T=CAV(T),A=I(V(T) < C),X(T)), (3.4)

which corresponds with the data structure studied in this chapter. We
observe n independent and identically distributed observations Y3,...,Y,
of Y. Note that CAR allows the probability of being censored at time c,
given one is not censored yet, to depend on the reporting delay history
and the observed covariate history. As in the previous examples, possible
parameters of interest are the marginal distribution of T' and regression
parameters in Cox proportional hazard models or linear regression models
with outcome log(T).

One should note that reporting delay causes bias in the naive Kaplan—
Meier estimator of the distribution of T'. For simplicity, let us assume that
the Uj’s are reported immediately (i.e., A; = U;) but that T is reported at
a possibly delayed time Ax. Let C be the time at analysis, which is assumed
to be independent of T. If death is reported before the censoring time C
(i.e., Ax < C), then the censoring variable is simply C. Suppose now that
at time C death has yet to be reported (i.e., Ay > C) and C is between

Uj—1 = A;j_, and U; = A;. Then we cannot be sure that T did not happen  j
between U;—; and C since all we know is that T > U;_;. It is common

practice to set C = U;_; and thus let T be right-censored at Uj;_1. The

censoring variable is now a function of Ay and thus of 7', which implies that 4

censoring is no longer independent of T. This can lead to serious bias in

the Kaplan—Meier estimator, as nicely illustrated in a simulation in Hu and §. |
Tsiatis (1996) and an analysis of the California AIDS Registry in Hubbard, 13
van der Laan, Enaroria, and Colford (2000) earlier analyzed in Colford et | 3%

al. (1997).

We already illustrated the applications of this data structure in studies ¥
in which data on a subject are reported with delay to the data analyst.
The reporting delay data structure also appears naturally in the following
interval-censored data type of application. Consider a T defined by an event 3

-
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that can only be detected at a monitoring time; for example, T' might be
the time of onset of a tumor or the time at which the CD4 count of an
AIDS patient drops below a particular value. At the monitoring time, one
can find out whether T happened, and if it happened one might be able to
determine the precise value of T' (or use an extrapolated approximation)
between the last and current monitoring times. In this case, we have no
reporting delay for the U;’s (ie., A; = Uj), 5 =1,...,k—1, but T is
reported at the monitoring time Aj following T'. If the precise value of
T between two subsequent monitoring times can only be guessed, then in
these kinds of applications it is also common practice to apply the Kaplan—
Meier estimator to the guessed T”s and be satisfied with estimation of
their distribution. In both situations, the Kaplan—Meier estimator can be
expected to be biased due to the “reporting delay” of T, while the data
structure above will acknowledge this reporting delay phenomenon.

In van der Laan and Hubbard (1998), locally efficient estimators of the
survival function have been developed and implemented analogously to the
methods presented in this chapter.

3.2.4 Univariately right-censored multivariate failure time

data
Consider a longitudinal study in which various time variables T =
(Ty,...,Tx) on the subject are of interest. For example, consider a study in

which HIV-infected subjects have been randomized to treatment groups.
In such a study, one might be concerned with comparing the multivari-
ate treatment-specific survival functions of time from the beginning of the
study until AIDS diagnosis, death, and time until particular AIDS-related
events (e.g., types of opportunistic infections). As a second example, one
might be interested in the bivariate survival function of time until recur-
rence of cancer (measured from extraction of tumor) and time until death.
In this setting, the researcher could also have interest in the estimation
of functions of the joint distribution, such as the distribution of the gap
time T5 — T} from recurrence to death. We will not require that time
variables T1,...,T; be ordered. Let L(t) represent a time-dependent co-
variate process that one measures on the subject over time. This process
includes the baseline covariates L(0). The full data on a subject is defined
as X = (T, L(T)), where T = max(Ty, ..., Tk).

Let C be the common right-censoring time, which could be the minimum
of time until end of study or time until dropout of the subject. Each subject
is observed until T = min(7T, C). Let T; = min(T;,C), j = 1,...,k. Thus,
the researcher observes, for each subject, the following data structure:

Y=, . Teb1=(T1 <0),..., A= (T < C), L(T)).  (3.5)



