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If we define the process X(-) = (I(Ty > -),...,I(Tx > -), L(-)), then we
can also represent the full data structure as X = X (T') and the observed
data structure Y as

Y =T =CAT,A=IT=T),X(T).

We refer to the latter general data structure as “univariately right-censored
multivariate data”. Note that CAR allows the hazard of censoring at ¢ to
be a function of X(c) and thus of the observed part (up until time c) of
(T1, T, ...) and of time-dependent covariates L(c).

Possible parameters of interest are the multivariate failure time distribu-
tion and the distribution of waiting times if T} < ... < Tk. Note that such
parameters can be defined as u = EB, where B = b(X) is a function of
X. If, for given £ € R¥, one takes B = I(T > ), then p = S(f). Likewise,
if, for givent > 0, B = I(T; — Ty > t), then p = P(Ta —T1 > t). In
addition, regression parameters in a generalized linear regression model of
each survival time on baseline covariates and multiplicative intensity model
involving the intensities of T; w.r.t. a history including only a subset of the
observed past are of great interest as well.

We will now review previous proposals for estimation of multivariate
survival functions in the nonparametric full data model. All previous pro-
posals based on CAR models have imposed the stronger assumption of
independent censoring. Because the nonparametric maximum likeélihood
and self-consistency principles (Efron, 1967; Turnbull, 1976) do not lead
to a consistent estimator for continuous survival data, most proposed es-
timators are explicit representations of the bivariate survival function in
terms of distribution functions of the data (see Campbell and Foldes, 1982;
Tsai, Leurgans and Crowley, 1986; Dabrowska, 1988 and 1989; Burke, 1988;
the so-called Volterra estimator of P.J. Bickel in Dabrowska, 1988; Pren-
tice and Cai, 1992a and 1992b). These explicit estimators are generally
inefficient, but because they are explicit, their influence curves can be ex-
plicitly calculated so asymptotic confidence intervals are easy to compute
(see Gill, 1992; Gill, van der Laan and Wellner, 1995). In van der Laan
(1996a), a modified NPMLE of the bivariate survival function, which re-
quires a choice of a partition used to reduce the data, is proposed that
is shown to be asymptotically efficient. The methods above allow but do
not require that all failure times are censored by a common variable C. In
contrast, Wang and Wells (1998) and Lin, Sun, and Ying (1999) assume
that Ty < ... < Ty with probability 1 and, as in the present example, the
failure times are all right-censored by the same censoring variable C. The
Lin, Sun, and Ying (1999) estimator is an inverse of probability of cen-
soring weighted (IPCW) estimator as proposed by Robins and Rotnitzky
(1992) and defined for general CAR-censored data models in Gill, van der
Laan, and Robins (1997). None of the explicit estimators are efficient. Fur-
ther, none of the estimators incorporate data on prognostic covariates such
as L(t). As a consequence, all are inconsistent under informative right-
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censoring (i.e., when Ag(t | X) does actually depend on X (¢)). In van der
Laan, Hubbard and Robins (2002), locally efficient estimators of the mul-
tivariate failure time distribution and waiting time distributions based on
the general multivariate failure time data structure (3.5) are provided that
are analogous to the methods presented in this chapter.

Finally, we remark that multiplicative intensity models for multivari-
ate counting processes provide estimators of intensities for these data
structures, but these methods are not appropriate (see Section 3.1) for
estimating more marginal parameters. The literature on frailty models pro-
vides an extension of the multiplicative intensity model methodology for
multivariate survival times by assuming that the time variables are inde-
pendent given an unobserved time-independent frailty and the past (see
e.g., Clayton and Cuzick, 1985; Hougaard, 1986; Oakes, 1989; Clayton,
1991; Klein, 1992; Costigan and Klein, 1993). In particular, this extension
is implemented in S-plus as part of the Coxph function.

3.3 Inverse Probability Censoring Weighted
(IPCW) Estimators

Let {Dy, : h € HF} be a set of full data estimating functions (i, p, X) —
Dn(X | p,p) for p with nuisance parameter p indexed by h € HF. Let
D = {Dn(- | p,p) : h € HF, u,p} be the corresponding set of full data
structure functions.

For D(X) € D, we define A(D) = I(D(X) is observed). There exists
a real-valued random variable V(D) < T so that I(D(X) is observed) =
I(C > V(D)). For D € D, define

D(X)A(D) _ D(X)A(D)
Pe(A(D)=1|X)  G(V(D)|X)’

where G(t | X) = P(C > t| X).
In model M(G), we can obtain an initial estimator of p by solving

ICo(Y | G, D) = (3.6)

0= ICo(Y; | Gn, Dn,(- | , pn)),

i=1

where G, is an estimator of G, and h, € HF is a possibly data-dependent
index specitied by the user.

3.8.1 Identifiability condition
Let D(p1,G) be defined (as in (2.13)) by

D(p1,G) = {De€D:Eg(ICo(Y | G,D)| X) = D(X) Fx-a.e.}
= {DeD:G(V(D)|X)>0 Fx-ae.}. (3.7)



