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In order to stress that dM depends on p, Ap and that g(h) depends on ,
we will now and then denote these quantaties with dM, a, and g,,, respec-
tively. Here [ g(h)(t)dM(t) equals the projection of [ h(t, Z(t—))dM(t)
onto the tangent space {[ g(t)dM(t) : g} of Ag. In other words, the full
data estimating functions are of the form [ h(t, Z(t—))dM (t) for h chosen
so that it is orthogonal to the tangent space of Ag. Thus, each h yields an
estimating function for 4 = § indexed by a nuisance parameter \g. The
optimal estimating function in the full data model in which one observes n
i.i.d. observations of X is obtained by selecting h(t Z(t-)) = W(t), which
corresponds with the full data efficient score SF, efs(X | Fx). Our general
choice (3.6) ICo(Y | G, Dy) is given by

IC(Y | G, Da(- | 1, A0)) = Da(X | 4 Ao)—@(T‘ATx‘),

where A = I(C > T) and G(t | X) = P(C > t | X). Because D}, is an

integral (sum) of unbiased estimating functions, an alternative choice of {

ICy(Y | G, Dy,) is given by

I0n(Y | G, Da- | 1, Ao)) = [ {446, 26-)~gu (W)} Bo2D)

G| X)

We have the following lemma (as in Robins, 1993a). ¢

Lemma 3.1 If D(X)I(G(T | X) > 0) = D(X) Fx-a.e., then
E(ICn(Y | G,D) | X) = D(X) Fx-a.e.

If [ h(t, Z(t-))I(G(t | X) > 0)dM(t) = [ h(t, Z(t—))dM(t) a.c., then
E(ICw(Y | G,D) | X) = D(X) Fx-a.e.

Proof. We have

DX)I(T < C)
B ( GT1X) 'X)

E(ICn(Y | G, D) | X)

I(G(T | X) > 0)D(X)

/ h(t, Z(t-)I(G(t | X) > 0)dM(£).0

Let ICo(Y | G,Dn(- | 1,Ap)) denote one of these two choices of esti- { |
mating functions for p with nuisance parameters Ay, G. Given estimators
Gn, Ao,n of G, Ao, each of these observed data estimating functions yields |

an estimating equation for u = 3:

0= ZICO(Y; | Gn,Dh(' l 122 AU,’"))'

i=1

As discussed in Section 3.1, if we assume a multiplicative intensity model

for A(t) = I(C < t) w.r.t. F(t) = (A(t), X (min(t, C))), then Coxph() can -

be used to obtain an estimate of G. We also need a reasonable estimator
of Ag. Since our estimating function is orthogonal to the nuisance tangent
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space in the observed data model M(G) with G known, which thus includes
the tangent space generated by Ay, the influence curve of ., is not affected
by the first-order behavior of Ag , (except that it needs to be consistent at
an appropriate rate). Therefore, it suffices to construct an ad hoc estimator
of Ag. Since E(dN(t)) = EE(dN(t) | Z(t-)) = M (t)E(Y (t) exp(BW (2)))
it follows that

‘ E(dN(t))
o E(Y(t)exp(BW (1))

For general 3, we denoted the right-hand side of the last equation with
Ao(t | B), while at the true 3 it equals Ag(t). Now, note that

Ao(t) = Ao(t | ﬂ) =

E(@dN(t) = E(dN(t)%(gt—l?j%))
E(Y(t)exp(BW (1)) = E(Y<t>exp(ﬂW(t”Ic(z |>Xf)))'

This suggests the following estimator of Ag(t | 8):

dN;()I(C; > t)/Ga(t | X:)
13, Ya(t) exp(BW;(£))I(Ci > t)/Gn(t | Xi)'

Aon(t | B) =

Substitution of Agn(t | B) for Ag in our estimating function yields the
following estimating equation for §:

0="3" ICo(¥: | Gy Da(- | B, Ron(- | B)). (3.10)

g=1

We now reparametrize the full data estimating function so that it has a
variation-independent nuisance parameter

where p denotes the additional parameters beyond 3 identifying Ag(- |
B). We denote this reparametrized class of full data structure estimating
functions with Dy (x | 8, p) again.

We will now provide a sensible data-adaptive choice for the full data
index h. If Ac(t | X) = Ac(t | Z) so that censoring is explained by the
covariates in our multiplicative intensity model, then a sensible estimating
function is the one corresponding with the score of the partial likelihood
for 3 and Ao ignoring V>(t) which is given by (Andersen, Borgan, Gill, and
Keiding, 1993)

/ {W(t) - EWOYOI(C > &) exp(5W (1)) } I(C > t)dM(t). (3.11)

E(Y(t)I(C > t) exp(BW (t)))



