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Define
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where G*(t | Z) is a conditional survivor function of C, given Z, corre-
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sponding with a hazard Ac(t | Z(t—)) approximating the true conditional :
survivor function G(¢ | X) but restricted to only depend on the covari- =
ates Z entering the full data multiplicative intensity model. Firstly, we :

note that g(h*) = 0, which proves that [ h*(t, Z(t—))dM(t) is an element
of our class of full data estimating functions (3.9). Secondly, notae that ¢
G* t|2)

IC02(Y | G, Dp+(- | p, p)) equals (3.11) if in truth G(¢ | X) =
(i.e., our IPCW-estimating function reduces to the optimal estimating func-
tion under the assumption that Ac(t | X) = A¢(t | Z)). We propose to

!

estimate h* by substitution of estimators G}, of G* and G, of G, and
by estimating the empirical expectations. One can base G}, on fitting a

multiplicative intensity model for the censoring process A(t) only using
a past (A(t—), Z(t—)) while one can use the entire past for G,. Let A%
be the resulting estimate of h*. With this choice of kY, the estimator ;60
is at least as efficient as the usual partial likelihood estimator if in truth
Ac(t | X) = Ac(t | Z) and remains consistent and asymptotically nor-

mal in model M(G). Therefore, this estimator is a true generalization of |}

the usual partial likelihood estimator of 3 that ignores the observed co-

variates beyond Z(t). This estimator was analyzed by Robins (1993a) (for
N(t) = I(T < t) being a failure time counting process), and used to analyze |
an AIDS trial in Robins and Finkelstein (2000). Pavlic, van der Laan, But- 1
tler (2002) used this estimator in general multiplicative intensity models to

analyze a recurrent event data set.

A nice fact is that 8% can be implemented by using the weight option in
the S-plus function Coxph() and assigning to each observation line (corre- °

sponding with a time-point ¢ at which covariates change or events occur)

of a subject the weight w(t) = I(C > t)G%(t | Z)/Gn(t | X). The reason |
that the weighting still works for the baseline hazard is that at the true 3 §

E(dN (tyw(t))
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If G, = G, then our general asymptotic Theorem 2.4 in Chapter 2 shows

that, under regularity conditions, this estimator 3° will be asymptotically
linear with influence curve

e(B)" IC(Y | G, Dw(- | B, p)), 3.12)

where ¢(8) = —#EICO(Y | G, Dy(- | B, p)) and h is the limit of h}. If G is
estimated according to a CAR model (such as the multiplicative intensity
model for A(t) = I(C < t) w.r.t. F(¢)) whose unspecified parameters gen-
erate a tangent space T2(Ppy,¢) in the observed data model, then Theorem

Ao(t) = Aot B) =
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2.4 shows that 39 will be asymptotically linear with influence curve equal
to the projection of (3.12) onto the orthogonal complement of T3(Pry ).
In particular, this means that one could use (3.12) as a “conservative”
influence curve to construct conservative confidence intervals.

To find the correct influence curve of 32, one has to calculate the pro-
jection operator onto T2(Pry ) that is provided in Lemma 3.2 in the next
subsection for the Cox proportional hazards model for Ac(t | X). Appli-
cation of Lemma 3.2 (i.e., (3.17)) teaches us that if ICo(Y | G,Dy) =
Dr(X)A/G(T | X) and Ac(t | X) is modeled with the Cox proportional
hazards model A¢(t | X) = Aoa(t) exp(aWa(t)), then the influence curve
IC(Y) of 38 is given by

IC(Y) = ()~ {ICo(Y | G,Du(- | B,p)) — E(ICoS;)E(S5S, ) Sa}
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where

dMg(t) = dA(t) — E(dA(t) | F(t)) = dA(t) — Ya(t)hoa(t) exp(aWa(t)),

and So = [Wa(t)dMg(t) is the partial likelihood score of a. Here
Yat)y =1 (C > t,T > t) is the indicator of A(t) being at risk of jumping
at time ¢, given the observed past. The numerator can be estimated with
inverse probability of censoring weighting by noticing that E(Dy(X)I(T >
t)exp(aWa(t)) = E(Dh(X)I(T > t)exp(aWa®)I(C > T)/G(T | X)).
Notice that it is straightforward to estimate IC(Y’). Let I C(Y) be the es-
timated influence curve. We can now estimate the covariance matrix of the
normal limiting distribution of /{82 — 8) with

=1 Z Cw)icw) .
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Similarly, we can apply Lemma 3.2 to compute the influence curve for the
case where ICo(Y | G, Dy,) = ICo2(Y | G, Dy) is given by [{h(t, Z(t-)) —
g(h)(t)}%l%ng (t). In this case, the influence curve of 33 is given by
IC(Y) = o(B)™ {ICoa(Y | G, Du(-| B, ) — EUC025])E(SaSz) ™ Sa}
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where h/(u) = h(u) —g(h)(u). This finishes the methodology for 32 since we
defined the estimator, and provided its influence curve and corresponding
confidence interval.

The optimal mapping from full data estimating functions to observed
data estimating functions is obtained by subtracting the projection of
ICy(Y) onto Tcar as given in the next section and Theorem 1.1 in Chapter

dMG(t)’



