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IC(Y | @G, Da(- | B,A0) = ICo(Y | G,Da(: | B, o))
- [ Qw Funaretu),
where

Q= E(ICo(Y) | C =u,X(u)) - E(ICo(Y) | C > u, X(u)).

Note that Q(u, F(u)) is the difference between the regression E(ICo(Y) | f |
A(u), X (min(C, u)) evaluated at A(u) = I(C = u) and A(u) = 0, where we

recall A(u) = I(C < u). The latter suggests a simple estimation procedure
for Q(u, F(u)). If ICy = ICy;, then

Q(u, F(u)) = —E(IC1(Y | G, Dg) | C > u, X (u)).
If ICy = ICy2, then it is straightforward to show that

I(C >1t)

aw Fw) =& ( [ 10 20) - sty 5o

Given an initial consistent estimator 3 and estimates Gn, Agn(- | 82), Qn
(the latter is discussed in Section 3.5), one can now define the one-step
estimator

,371; = :32 + % ZIC(Yi | QmeDh;(' | ﬁ?wpn))-
=1

Even when G(- | X)

tational ease we would usually recommend our simple choice h}. Robins

(1993a), however, shows hop: is the solution to a Fredholm type 2 integral

equation and describes how to construct a locally efficient estimator of 3
by numerically solving that integral equation to obtain an estimate h,, of
hopt-

Remark.

Robins and Rotnitzky (1992) show that if we replace CAR. by the weaker,

also non-identifiable, assumption that the cause specific hazard of C at
t given X (t—) and {N (u);u >t} does not depend on {N (u);u >t} for
each £, then the model for the observed data Y is identical to the model |

M (CAR). Thus both the theory and methodology developed under the
assumption of CAR actually hold under this weaker assumption.

P

dM(t) | X (u),C > u) .

= G(- | Z), this estimator will generally improve on }j }
B2. If we implement the c,,, extension (Chapter 2, Section 2.3), then we :

can guarantee that this estimator improves on 82. Finally, if h, converges |
to hopt (see Section 2.6 or Chapter 2), then it is efficient, but for compu-
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3.3.3 Extension to proportional rate models.

As the full data model, we now consider a proportional rate model
E(dN(t) | Z*(t-)) = Y (t)ho(t) exp(BW (1)), (3.13)

where Z*(t—) is a covariate process not including the past N(t) of the
counting process itself and Y (¢),W (t) are functions of Z*(t—). Proportional
rate models avoid the need to model the effect of N(t—) on dN(t). These
models have been considered by Pepe and Cai (1993), Lawless (1995), Law-
less and Nadeau (1995), Lawless, Nadeau, and Cook (1997), and Lin, Wei,
Yang and Ying (2000), .

These authors propose to use the analog of the Andersen—Gill par-
tial likelihood estimating functions to obtain parameter estimates for the
proportional rate model. The estimates obtained are only consistent and
asymptotically normally distributed under the assumption that censoring
only depends on the covariates entering the proportional rate model; that
is, Ac(t | X(t)) = Ac(t | Z*(t)). This assumption becomes more ques-
tionable as the conditioning set Z*(¢) decreases, which is what the use of
proportional rate models encourages. In particular, in recurrent event ap-
plications the past of the counting process is often a predictor of censoring;
for example, the number of asthma attacks or hospital admissions might
predict the censoring time (e.g., dropout time by change of treatment) of a
subject. In addition, these estimates are inefficient, in general, even if the
full data structure is observed. The reason for this is that partial likelihood
is not the correct likelihood in the proportional rate model.

Our methods described in the previous subsection are readily appli-
cable to the proportional rate model as well. As the class of full data
estimating functions, one can use D, = [A(t, Z*(t—))dM,(t), where
dM,(t) = dN(t) — E(dN(t) | Z*(t-)) and h is arbitrary. As in the full
data intensity models, the orthogonal complement of the nuisance tangent
space in the full data model is a subset of these estimating functions. We
will not aim to specify this precise subset but instead just accept using full
data estimating functions that are not necessarily orthogonal to Ag. We
can map these full data estimating functions into a class of observed data
estimating functions with the same mappings IC(Y | @Q, G, D},), presented
above. In particular, our proposed choices for the index h of the full data
estimating function can still be applied. This yields simple-to-implement
estimators that are at least as efficient as the “partial-likelihood”-based
estimating functions used in Lin, Wei, Yang, and Ying (2000) and remain
consistent if Ac(t | X(t)) # Ac(t | Z*(t)). If we do not enforce Dy, to
be orthogonal to the nuisance tangent space of the baseline hazard in the
full data model, then our confidence intervals based on the observed data
estimating function itself are not necessarily conservative anymore. There-
fore, obtaining a meaningful estimate of variance requires either calculating
the projection onto the nuisance tangent space of the baseline hazard (in



