192 3. Monotone Censored Data

the full data model) so that we can enforce Dy € T,ﬁj‘s or just using the
bootstrap. We recommend the latter.

3.8.4 Projecting on the tangent space of the Cox proportional
hazards model of the censoring mechanism

Let H(PFX,G) C TCAR(PFX,G) be a subspace of TCAR(PFX,G) and
(Q1,G) = IC,.u(- | @1, G) be a mapping from Qi X G to pointwise-defined
functions of Y so that {ICpu(- | @1,G) : @1 € Q1} C H(Pry,g) for all
G € G. As in Chapter 2, we define a more efficient choice of ICy as

D(X)A(D)
I Y ,G,D = =71 nul’ )G7 ’
where the true parameter value of @, is @Q1(Fx, G) defined by

D(X)A(D)
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The following lemma establishes this projection IC,, for the case where

H(Pry, ) is the tangent space of G under the Cox proportional hazards
model.

IChu(- | Q1(Fx,G),G, D) =1y @ (

Lemma 3.2 Consider the partial likelihood of the counting process A(t) = ]
I(C < t) w.r.t observed history F(t) = (A(t-),Xa(min(t—,C))) i
for a multiplicative intensity model aa(t)dt = E(dA(t) | F(t)) =

Ya(t)Xoa(t) exp(BaW (t))dt,
L(Ba, Aoa) = T aa(t)* P (1 — au(t)dt) =440,

where :T( denotes the product integral (Gill and Johansen, 1990; Andersen,
Borgan, Gill, and Keiding, 1993). Let dMg(t) = dA(t) — aa(t)dt. The
score for the regression parameter B4 is given by

Spa = [ WaMe(0).
The tangent space Tp,, is given by
Thoa = {/g(t)dMg(t) 39}-

Thus the tangent space Tp,, p.(Prx,c) generated by the censoring
mechanism parameters (Apa, 34) is given by

Thonsn (Prc) = ([ WNAMa(e) + { [ st g}
We have
I ( JHCF@M0 1 Thn) = [amoie® 61
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- / E {H(t, F(t))Ya(t) exp(BaW (¢)) }
B E {Ya(t) exp(B8aW (1))}
Thus, the efficient score of Ba is given by
SBA = Spa-— H(SﬂA | Tha)
= /{W(t) _ E{W(t)YA(t) exp(ﬂAW(t))} } dMG(t)

dMc(t).

E{Ya(t)exp(BaW (t))}
and
Trousn(Pred) = (53,0 0 [o0Me) o). @19
Consider now the special case where A(t) is discrete on a fine grid
t1 < ... < ty so that the assumed multiplicative intensity model
aa(t;) = E(dA(t;) | F(t;)) = Ya(t;)doa(t;)exp(BaW(t))), § =
1,...,k, is appropriate: note that as(t;) are now conditional probabili-

ties. Given any function V(Y) € L¥(Pry,c), we have IV | Tcar) =
[ Hy(t, F(t))dMg(t), where Hy(t, F(t)) = Hya(t, X(t)) — Hv,(t, X))
with Hy1 = E(V(Y) | C = t,X(t)) and Hyz2 = E(V(Y) | C > t, X(t)).
Thus, given any function V(Y'), we have

(V| Taoa) = [ o) (@)dMo ).
Thus, given any function V(Y'), we have that II(V | Taq,,8,4) 18 given by
E(VSyE(S3, S 55+ [ loHva) — o(Bval}OaMo(d). (.10

Consider the case where Ya(t) = I(C > t,T > t). We have for any
V = V(X,C) (thus, in particular, for V=V (Y))

E {V(X, (T > t)G(t | X) exp(BaWV (1)) Fmmrsh }
E{Y4(t) exp(BaW ()}

g(Hv,)(t) =

and

E{Qv2(X(t))I(C > min(t, T))/G(min(t, T) | X)}
E{Ya(t) exp(BaW (t))} ’

where Qvo(X(t)) = E{V(X,C)(T > t)G(t | X)exp(BaW(¢)) | C >

t,X(t)} and G(t | X) = P(C >t | X). (Note that we can set I(C >

min(t, T))/G(min(¢, T) | X) equal to 1 as well in both formulas, but the

inclusion of this term shows how one can estimate it from the observed

data).
In particular, if Ug(Dp)(Y) = Dp(X)A/G(T | X), then

H(Uc(Dh) | Thoa8a) = E(Uc(Dn)Sp;)E(Sh,S54) "S54

g(Hv2)(t) =




