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_/ E {Dh(X)I(T > t) exP(:BAW(t)) IG(ct'l>Xf) }dMG(tI3_17)

E{Ya(t) exp(BaW (1))}
(Note that we can set A/G(T | X) to 1 in this formula again).

As remarked earlier, since C can be discrete on an arbitrarily fine grid,
the projection (3.16) for the discrete multiplicative intensity model also
holds for the continuous multiplicative intensity model under appropriate
measurability conditions. For a formal treatment of the continuous case,
see van der Vaart (2001). In Chapter 6 we state an immediate geneéaliza—
tion (Lemma 6.1) of this lemma to multiplicative intensity models for a
general counting process A(t).

Proof. The statements up to and including (3.15) were proved in

Section 2.2 of Chapter 2. For the projection onto Tcapr, we refer to ‘v
Theorem 1.1, which was only formally proved for the case where C is &

discrete. Thus, we only need to show the last projection result (3.17)
and the general formulas g(Hy,1)(t) and g(Hy,2)(t). In this proof, we will
now and then suppress the index A that we used for the parameters of
the censoring intensity E(dA(t) | F(t)). Firstly, consider the special case
V(C,X) = Ug(Dn)(Y) = Dh(X)I(C > T)/G(T | X). Since Hy,1 = 0, we
have

Hy(t, F(t) = ~E(DW(X)A/GT | X) | C > 8, X(t)).

Let us denote the expectation with f(X(t)). Thus, the numera-
tor of —g(Hv)(t) is given by E(E(Dn(X)A/G(T | X) | C >
L X(0)Ya()exp(@W(2). We have B(F(X()Ya(t)exp(aW () =
E(f(X(®) (T > t)G(t | X)exp(aW (t))), where we use Ya(t) = I(C >
t,T > t). We can move I(T > t)G(t | X)exp(aW(t)) inside the condi-
tional expectation of f(X(t)). The resulting term can now be rewritten as
follows:

E(E(Dh(X)AG(t | X)I(T > t)exp(aW (£))/G(T | X) | C > t, X(t)))
= E(E(Dn(X)I(T > t)exp(aW(t)) | C > t, X(t)))
= B(E(Dh(X)I(T > t)exp(aW (1)) | X(£))

= E(Dy(X)I(T > t) exp(aW (t))).

At the first equality, we conditioned on X and C > t and used that E(A | ] |
C>t,X)=G(T| X)/G(t| X), and at the second equality we use that, by
CAR, for any function V(X) E(V(X) | C > t,X(t)) = E(V(X) | X(t)). |
Finally, for the purpose of estimation of this last expectation we note that ;

E(Dr(X)I(T 2 t)exp(aW (t))) = E(Dn(X) exp(aW (£))A/G(T | X)),
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. t) exp(aW (t))) of 9(Hvz2) is actually given by
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which proves (3.17).
For a general choice of V = V(X, C) we have
,C) 9(Hy) = g(Hy,))~g(H
where Hy; = EV(X,C) | C =t X(t)) and Hy, = EWV(Xx, C)(l gzi,

, X(2)). rator X
;(Hf,t,B i’srgf‘,:;?; ator E(E(V(X,C) | C > 6, X(t)Ya(t) exp(aW (t))) of

E(EWV(X,O)(T 2 )G | X) exp(aW(t)) | C > ¢, X(2))),

Let Qua(X (¢ = E\V(X,C)I(T ¢ X
Then t‘;12e la.gt)zerm ig gi(ven b)y( 206 %) exP(aW(t)) (> )

E(Qv2(X()(C > min(t, T))/G(min(t, T)| X)).

;‘h;vr::lrg;rator E(EWV(X, C)l C=1tX@)Ya(®) exp(aW (t))) of 9(Hy,)

EQva(X () = E(B(V(X,H)G(t | X)I(T > exp(aW (1)) | C =1, X(2))).

By CAR, we have for any function D(X) that E(D( X
, we b X) | C=t,X@) =
E(D(X) | X(t). Thus, the numerator E(V(X,t)G(¢t | X)I ((T)) >

E(V(X,t)G(t | X)[(T >1t) exp(aW (t))I(C > min(t, T))/C_;’(min(t,bT) [ X)).

a

3.4 Optimal Mapping into Estimating Functions

The mapp.ing from D, into observed data estimating functions is a sum of
two mappings IC, and ICcar, where ICy is an initial mapping satisfying
gG(ICO(Y | G,GQ) | X) = D(X) Fx-a.e. for D in a non empty subset
(r1(Fx),G) C D and ICc4p is the projection of ICy onto the tangent
space Tcar(Ppy ). By Theorem 1.1, we have s

Toan(Pry, o) — { [ @w Xwamew) Q} C L3(Pry ),

where

dMc(u) = I(T € du, A = 0) - I(T > w)Ac(du | X)
is the martingale of A() =

ICcar(Y | Q(Fx, G), G, D) = / Q(Fx, G)(u, X (4))dMe(u),



