- § Notation

just to make its arguments explicit.

D(u,p) = {Dp(X | p,p) : b € HF }: all possible full data functions
obtained by varying h, but fixing yu, p.

D = {Dn(X | u(Fx),p(Fx)) : Fx € MF,h € HF}: all possibly full data
structure estimating functions obtained by varying h and Fx.

S:F(- | Fx): the canonical gradient (also called efficient influence curve)
of the pathwise derivative of the parameter u(Fx) in the full data model
MFE,

T:l’;’*(Fx): the set of all gradients of the pathwise derivative at Fx of
the parameter K(Fx) in the full data model MF whose components span
Truis (Fx)-

Dh.o (- | u(Fx), p(Fx)) = S:ff( | Fx): that is, hesy indexes the optimal
estimating function in the full data structure model. Here hesp = he; #(Fx)
depends on Fx. Off course, one still obtains an optimal estimating function
by putting a k x & fixed matrix in front of S;‘fFf

F(t): a predictable observed subject-specific history up to time t, typically
representing all observed data up to time point ¢ on a subject.

A: a time-dependent possibly multivariate process A(t) =
(A1(2),..., Ax(t)) whose components describe specific censoring (e.g.,
treatment) actions at time ¢. Here A represents the censoring variable C'
for the observed data structure. Typically, A;(t),j=1,.. ., k, are counting
processes.

A: the support of the marginal distribution of A.

a(t) = E(dA(t) | F(t)): the intensity (possibly discrete, a(t) = P(dA(t) =
1| F(t)) at given grid points) of counting process A(t) w.r.t. the history
F(t).

Y = (A, Xa): a particular type of observed censored data, where for the
full data we have X = (Xa : a € A), and A tells us what component of
X we observe. For example, A(t) can be the indicator I (C < t) of being
right-censored by a dropout time C. If the full data model is a causal
model and there is no censoring, then A(t) is the treatment that the
subject receives at time ¢. If the observed data structure includes both
treatment assignment and censoring, then A(t) is the multivariate process
describing the treatment actions and censoring actions assigned to the
subject at time ¢.

L3(Pry,c): Hilbert space of functions V(Y) with Ep,  V(Y) = 0 with
inner-product (h, g) Pryc = Epp oh(Y)g(Y) and corresponding norm

” h ”PFX,G= \/EPFX,Gh2(Y)'

T(PFx,G) C Lg(PFx,G), Tnuis(PFx,G) C Lg(PFx,G)’ TxJ{uis(PFx,G) C
L§(Pry,c) are the observed data tangent space, observed data nuisance
tangent space, and the orthogonal complement of the observed data
nuisance tangent space at Pry , respectively, in model M (CAR) (or, if
made explicit in M(G)), where i is the parameter of interest.

Tcar(Pry ) = {(V(Y): Eg(V(Y) | X) =0} C L3(Pr, ¢): the nuisance
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tangent space of G in model M(CAR). .
T2(Prx,c) C Tcar(Pry,c) or Te(Prx,c) C TCAR(PFx,G)3 the nuisance
tangent space of G in the observed data model M(G).

D —1ICo(Y | Qo, G, D), D — IC(Y | Fx,G,D), D — IC(Y | Q,G, D).
mapping from a full data function into an observed data function in-
dexed by nuisance parameters Qo(Fx,G),G, Fx,G or Q(Fx,G),G.
ICy(Y | Qo,G, D) stands for an initial mapping and IC(Y | Fx,G., D)
and IC(Y | Q(Fx,G),G,D) for the optimal mapping orthogonalized
w.r.t. Tcar or a mapping orthogonalized w.r.t. a subspace of Tc4gr. In
many cases, it is not convenient to parametrize IC in terms of F %, G, but
instead parametrize it by a parameter Q = Q(Fx,G) and G. We note
that the dependence of these functions on Fx and G is only through the
Fx-part of the density of Y and the conditional distribution of Y, given
X, respectively.

The mapping ICj satisfies for each Pry ¢ € M(G): for a non empty set of
full data functions D(p; (Fx ), G), we have

Eg(ICo(Y | Q,G,D)| X) = D(X) Fx-ae. forall Qe Qp. (1)
For IC, we have the additional property at each Pry,c € M(CAR):

= Hry,c(ICo(Y | Qo(Fx,G),G, D) | Tcar),

or the projection term can be a projection on a subspace of T 4g. Here
I(- | Tcar) denotes the projection operator in the Hilbert space L (Pry, )
with inner product (f, 9 Pry.c = Epp, o f(Y)9(Y).

D(p1(Fx), G): the set of full data functions in D for which (1) holds.
Thus, these are the full data structure functions that are mapped by
ICy into unbiased observed data estimating functions. By making the
appropriate assumption on the censoring mechanism, one will have that
D(p1(Fx),G) = D, but one can also decide to make this membership re-
quirement Dy, (- | u(Fx), p(Fx)) € D(p, (Fx),G) a nuisance parameter of
the full data structure estimating function: see next entry.

Du(- | u(Fx),0(Fx,G)), h € HF: these are full data structure estimat.
ing functions satisfying Dy (- | u(Fx),p(Fx,G)) € D(pi(Fx),G)) for all
h € H¥. Formally, they are defined in terms of initially defined full data
estimating functions D}, as

Di(- 1, p,01,G) = Drihaer (u,p,00,00) (- | 15 9),

where HF(u,p,01,G) C MF are the indexes that guarantee that
Ec(ICo(Y | Qo,G,Dn(- | m,p)) | X) = Da(X | p,p) Fx-ae and
(| H¥(u,p,01,0)) is a mapping from H¥ into HF (u,p, p1,G) that is
the identity mapping on HF (u, p, p1,G). Thus, if Dy(- | w(Fx), p(Fx)) €
D(p\(Fx),G) for all Ppy ¢ € M(G), then D} = D,. For notational con-
venience, we denote DJ(- | u, p, p1,G) with Dh(- | u, p) again, but where p




